1
|
Huang X, Vasilev C, Swainsbury D, Hunter C. Excitation energy transfer in proteoliposomes reconstituted with LH2 and RC-LH1 complexes from Rhodobacter sphaeroides. Biosci Rep 2024; 44:BSR20231302. [PMID: 38227291 PMCID: PMC10876425 DOI: 10.1042/bsr20231302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/17/2024] Open
Abstract
Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.
Collapse
Affiliation(s)
- Xia Huang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong 250101, China
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J.K. Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
2
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
3
|
Schroeder CA, Caycedo-Soler F, Huelga SF, Plenio MB. Optical Signatures of Quantum Delocalization over Extended Domains in Photosynthetic Membranes. J Phys Chem A 2015; 119:9043-50. [PMID: 26256512 DOI: 10.1021/acs.jpca.5b04804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the excitonic delocalization across extended domains involving several light-harvesting complexes can lead to unambiguous signatures in the optical response, specifically, linear absorption spectra. We characterize, under experimentally established conditions of molecular assembly and protein-induced inhomogeneities, the optical absorption in these arrays from polarized and unpolarized excitation, and demonstrate that it can be used as a diagnostic tool to determine the resonance coupling between iso-energetic light-harvesting structures. The knowledge of these couplings would then provide further insight into the dynamical properties of transfer, such as facilitating the accurate determination of Förster rates.
Collapse
Affiliation(s)
- Christopher A Schroeder
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany.,Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | - Felipe Caycedo-Soler
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Susana F Huelga
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
4
|
Beyer SR, Müller L, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The open, the closed, and the empty: time-resolved fluorescence spectroscopy and computational analysis of RC-LH1 complexes from Rhodopseudomonas palustris. J Phys Chem B 2015; 119:1362-73. [PMID: 25526393 DOI: 10.1021/jp510822k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the time-resolved fluorescence of isolated RC-LH1 complexes from Rhodopseudomonas palustris as a function of the photon fluence and the repetition rate of the excitation laser. Both parameters were varied systematically over 3 orders of magnitude. On the basis of a microstate description we developed a quantitative model for RC-LH1 and obtained very good agreement between experiments and elaborate simulations based on a global master equation approach. The model allows us to predict the relative population of RC-LH1 complexes with the special pair in the neutral state or in the oxidized state P(+) and those complexes that lack a reaction center.
Collapse
Affiliation(s)
- Sebastian R Beyer
- Experimental Physics IV and Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth , 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Timpmann K, Chenchiliyan M, Jalviste E, Timney JA, Hunter CN, Freiberg A. Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1835-46. [DOI: 10.1016/j.bbabio.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
6
|
Böhm PS, Southall J, Cogdell RJ, Köhler J. Single-Molecule Spectroscopy on RC-LH1 Complexes of Rhodopseudomonas acidophila Strain 10050. J Phys Chem B 2013; 117:3120-6. [DOI: 10.1021/jp4005218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul S. Böhm
- Experimental Physics IV and
Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell
and Systems Biology, College of Medical Veterinary and Life Sciences,
Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell
and Systems Biology, College of Medical Veterinary and Life Sciences,
Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Jürgen Köhler
- Experimental Physics IV and
Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Timpmann K, Rätsep M, Hunter CN, Freiberg A. Emitting Excitonic Polaron States in Core LH1 and Peripheral LH2 Bacterial Light-Harvesting Complexes. J Phys Chem B 2004. [DOI: 10.1021/jp049165a] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia, and Krebs Institute of Biomolecular Research, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Margus Rätsep
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia, and Krebs Institute of Biomolecular Research, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, United Kingdom
| | - C. Neil Hunter
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia, and Krebs Institute of Biomolecular Research, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia, and Krebs Institute of Biomolecular Research, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
8
|
Freiberg A, Jackson JA, Lin S, Woodbury NW. Subpicosecond Pump−Supercontinuum Probe Spectroscopy of LH2 Photosynthetic Antenna Proteins at Low Temperature. J Phys Chem A 1998. [DOI: 10.1021/jp980028l] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Freiberg
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| | - J. A. Jackson
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| | - S. Lin
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| | - N. W. Woodbury
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| |
Collapse
|
9
|
Freiberg A, Allen JP, Williams JC, Woodbury NW. Energy trapping and detrapping by wild type and mutant reaction centers of purple non-sulfur bacteria. PHOTOSYNTHESIS RESEARCH 1996; 48:309-19. [PMID: 24271312 DOI: 10.1007/bf00041022] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/1995] [Accepted: 04/01/1996] [Indexed: 05/09/2023]
Abstract
Time-correlated single photon counting was used to study energy trapping and detrapping kinetics at 295 K in Rhodobacter sphaeroides chromatophore membranes containing mutant reaction centers. The mutant reaction centers were expressed in a background strain of Rb. sphaeroides which contained only B880 antenna complexes and no B800-850 antenna complexes. The excited state decay times in the isolated reaction centers from these strains were previously shown to vary by roughly 15-fold, from 3.4 to 52 ps, due to differences in the charge separation rates in the different mutants (Allen and Williams (1995) J Bioenerg Biomembr 27: 275-283). In this study, measurements were also performed on wild type Rhodospirillum rubrum and Rb. sphaeroides B880 antenna-only mutant chromatophores for comparison. The emission kinetics in membranes containing mutant reaction centers was complex. The experimental data were analyzed in terms of a kinetic model that involved fast excitation migration between antenna complexes followed by reversible energy transfer to the reaction center and charge separation. Three emission time constants were identified by fitting the data to a sum of exponential decay components. They were assigned to trapping/quenching of antenna excitations by the reaction center, recombination of the P(+)H(-) charge-separated state of the reaction center reforming an emitting state, and emission from uncoupled antenna pigment-protein complexes. The first varied from 60 to 160 ps, depending on the reaction center mutation; the second was 200-300 ps, and the third was about 700 ps. The observed weak linear dependence of the trapping time on the primary charge separation time, together with the known sub-picosecond exciton migration time within the antenna, supports the concept that it is energy transfer from the antenna to the reaction center, rather than charge separation, that limits the overall energy trapping time in wild type chromatophores. The component due to charge recombination reforming the excited state is minor in wild type membranes, but increases substantially in mutants due to the decreasing free energy gap between the states P(*) and P(+)H(-).
Collapse
Affiliation(s)
- A Freiberg
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, 85287-1604, Tempe, AZ, USA
| | | | | | | |
Collapse
|
10
|
Kinetics of Excitation Transfer and Trapping in Purple Bacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 1995. [DOI: 10.1007/0-306-47954-0_17] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Kennis JT, Aartsma TJ, Amesz J. Energy trapping in the purple sulfur bacteria Chromatium vinosum and Chromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90046-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
|
13
|
Pico- and nanosecond fluorescence kinetics of Photosystem II reaction centre and its complex with CP47 antenna. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90152-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Timpmann K, Zhang FG, Freiberg A, Sundström V. Detrapping of excitation energy from the reaction centre in the photosynthetic purple bacterium Rhodospirillum rubrum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90017-a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Freiberg A, Ellervee A, Kukk P, Laisaar A, Tars M, Timpmann K. Pressure effects on spectra of photosynthetic light-harvesting pigment-protein complexes. Chem Phys Lett 1993. [DOI: 10.1016/0009-2614(93)85447-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|