1
|
Wang L, Shang Q, Guo W, Wu X, Wu L, Wu L, Chen T. Evaluation of the hypoglycemic effect of probiotics via directly consuming glucose in intestines of STZ-induced diabetic mice and glucose water-induced diabetic mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103614] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
2
|
Liu H, Chen X, Zhang D, Wang J, Wang S, Sun B. Effects of Highland Barley Bran Extract Rich in Phenolic Acids on the Formation of N ε-Carboxymethyllysine in a Biscuit Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1916-1922. [PMID: 29414239 DOI: 10.1021/acs.jafc.7b04957] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highland barley, a staple food in northwest China, is a well-known source of bioactive phytochemicals, including phenolic compounds. This study evaluated the inhibitory effects of highland barley bran extract (HBBE) on the advanced glycation end product (AGE) levels in a biscuit model, as measured by Nε-carboxymethyllysine (CML) content. CML was detected in all inhibition models using HBBE extracted with different solvents. Under optimal conditions, CML formation in the heated model system composed of glucose/lysine/linoleic acid was effectively inhibited by HBBE. This inhibition effect using extracts from 60% acetone solution was 45.58%. Five major phenolic acids from HBBE (ferulic, syringic, sinapic, p-coumaric, and caffeic acids) were further tested for their trapping and scavenging abilities of glyoxal, a reactive carbonyl species and a key intermediate compound for forming CML. This study has demonstrated that HBBE can potentially control CML formation during food processing, therefore effectively reducing glycation in foods and benefiting those with chronic diseases.
Collapse
Affiliation(s)
- Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xiaomo Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, People's Republic of China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Shuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
- School of Medicine, Nankai University , Tianjin 300071, People's Republic of China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
3
|
Antibody-based detection of advanced glycation end-products: promises vs. limitations. Glycoconj J 2016; 33:545-52. [DOI: 10.1007/s10719-016-9708-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
4
|
Shirakawa JI, Arakawa S, Tagawa T, Gotoh K, Oikawa N, Ohno RI, Shinagawa M, Hatano K, Sugawa H, Ichimaru K, Kinoshita S, Furusawa C, Yamanaka M, Kobayashi M, Masuda S, Nagai M, Nagai R. Salacia chinensis L. extract ameliorates abnormal glucose metabolism and improves the bone strength and accumulation of AGEs in type 1 diabetic rats. Food Funct 2016; 7:2508-15. [PMID: 27121272 DOI: 10.1039/c5fo01618e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although extracts of the roots and stems of Salacia chinensis have been used in folk medicines for chronic diseases such as rheumatism, irregular menstruation, asthma and diabetes mellitus, little is known about the mechanism by which Salacia chinensis extract (SCE) ameliorates these diseases. To clarify whether SCE ameliorates the progression of lifestyle-related diseases, the inhibitory effect of SCE on the formation of advanced glycation end products (AGEs) was analyzed in a rat model of streptozotocin-induced diabetes. Although the oral administration of SCE did not ameliorate the diabetes-induced decrease in body weight, it ameliorated the increase in glycoalbumin levels in diabetic rats. An analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) demonstrated that the levels of N(ε)-(carboxymethyl)lysine (CML) were highest in the femurs and that they increased by the induction of diabetes. The administration of SCE also ameliorated the decreased femur strength and the accumulation of CML. Furthermore, when all of the carbohydrates in the chow of diabetic rats were replaced with free glucose, the administration of SCE significantly ameliorated a diabetes-induced increase in glycoalbumin and decrease in serum creatinine level and body weight. This study provides evidence to support that SCE ameliorates diabetes-induced abnormalities by improving the uptake of glucose by various organs.
Collapse
Affiliation(s)
- Jun-Ichi Shirakawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nagai R, Shirakawa JI, Ohno RI, Moroishi N, Nagai M. Inhibition of AGEs formation by natural products. Amino Acids 2013; 46:261-6. [PMID: 23504149 DOI: 10.1007/s00726-013-1487-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Since advanced glycation end-products (AGEs) inhibitors such as benfotiamine, pyridoxamine and aminoguanidine significantly inhibit the development of retinopathy and neuropathy in streptozotocin-induced diabetic rats, treatment with AGEs inhibitors is believed to be a potential strategy for preventing lifestyle-related diseases such as diabetic complications and atherosclerosis. Furthermore, preventive medicine is the most important approach to preventing lifestyle-related diseases, and improving daily nutritional intake is thought to prevent the pathogenesis of such diseases. Therefore, AGEs inhibitors that can be obtained from daily meals are preferred to prescribed drugs. In this article, we describe a strategy for developing new AGEs inhibitors from natural products.
Collapse
Affiliation(s)
- Ryoji Nagai
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou Minamiaso Aso-gun, Kumamoto, 869-1404, Japan,
| | | | | | | | | |
Collapse
|
6
|
Mera K, Nagai R, Takeo K, Izumi M, Maruyama T, Otagiri M. An autoantibody against Nε-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages. Biochem Biophys Res Commun 2011; 407:420-5. [DOI: 10.1016/j.bbrc.2011.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
7
|
Mera K, Nagai R, Haraguchi N, Fujiwara Y, Araki T, Sakata N, Otagiri M. Hypochlorous acid generatesNε-(carboxymethyl)lysine from Amadori products. Free Radic Res 2009; 41:713-8. [PMID: 17516244 DOI: 10.1080/10715760701332425] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since the accumulation of N(epsilon)-(carboxymethyl)lysine (CML), a major antigenic advanced glycation end product, is implicated in tissue disorders in hyperglycemia and inflammation, the identification of the pathway of CML formation will provide important information regarding the development of potential therapeutic strategies for these complications. The present study was designed to measure the effect of hypochlorous acid (HOCl) on CML formation from Amadori products. The incubation of glycated human serum albumin (glycated-HSA), a model of Amadori products, with HOCl led to CML formation, and an increasing HOCl concentration and decreasing pH, which mimics the formation of these products in inflammatory lesions. CML formation was also observed when glycated-HSA was incubated with activated neutrophils, and was completely inhibited in the presence of an HOCl scavenger. These data demonstrated that HOCl-mediated CML formation from Amadori products plays a role in CML formation and tissue damage at sites of inflammation.
Collapse
Affiliation(s)
- Katsumi Mera
- Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Nagai R, Unno Y, Hayashi MC, Masuda S, Hayase F, Kinae N, Horiuchi S. Peroxynitrite induces formation of N( epsilon )-(carboxymethyl) lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite. Diabetes 2002; 51:2833-9. [PMID: 12196478 DOI: 10.2337/diabetes.51.9.2833] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) on tissue proteins increases with pathogenesis of diabetic complications and atherosclerosis. Here we examined the effect of peroxynitrite (ONOO(-)) on the formation of N( epsilon )-(carboxymethyl)lysine (CML), a major AGE-structure. When glycated human serum albumin (HSA; Amadori-modified protein) was incubated with ONOO(-), CML formation was detected by both enzyme-linked immunosorbent assay and high-performance liquid chromatography (HPLC) and increased with increasing ONOO(-) concentrations. CML was also formed when glucose, preincubated with ONOO(-), was incubated with HSA but was completely inhibited by aminoguanidine, a trapping reagent for alpha-oxoaldehydes. For identifying the aldehydes that contributed to ONOO(-)-induced CML formation, glucose was incubated with ONOO(-) in the presence of 2,3-diaminonaphthalene. This experiment led to identification of glucosone and glyoxal by HPLC. Our results provide the first evidence that ONOO(-) can induce protein modification by oxidative cleavage of the Amadori product and also by generation of reactive alpha-oxoaldehydes from glucose.
Collapse
Affiliation(s)
- Ryoji Nagai
- Department of Biochemistry, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|