1
|
Culbreath CJ, McCullen SD, Mefford OT. Evaluation of Post-Processing on Additive Manufactured Bioresorbable Polymers for Medical Devices. ACS APPLIED BIO MATERIALS 2024; 7:7170-7182. [PMID: 39475536 DOI: 10.1021/acsabm.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Additive manufacturing (AM) has seen massive growth in the medical device sector and an increase in the clearance of devices. Many challenges still exist in the design, development, and clinical use of AM-fabricated devices, notably the processing, annealing, and sterilization of resorbable polymers. In addition, the use of these materials continues to grow in medical devices and scaffold technologies for tissue engineering and regenerative medicine (TERM). Specifically, this study focused on the scaffold mechanical properties post-processing and throughout a simulated resorption (in vitro) study. Herein, we evaluated three (3) materials that span a range of mechanical properties and degradation rates relating to a range of tissue healing rates and mechanical properties affording the opportunity of biomimetic potentials, Caproprene 100M, Lactoflex 7415, and Lactoprene 100M. These bioresorbable polymers were additively manufactured into scaffold forms of Type V tensile bars to investigate post-processing parameters. A range of heat treatments were then performed after the AM process to induce a range of semicrystalline morphologies, and subsequently, two different sterilization techniques were performed, one based on super critical carbon dioxide and another using electron beam radiation. It was statistically shown that the heat treatment parameters and the sterilization method had statistically significant effects on the scaffold properties of each material. While material differences were responsible for the majority of the mechanical property breadth, techniques utilizing analysis of variance allowed the observation of significant effects and interactions associated with heat treatment, sterilization, and material parameters (alpha = 0.05). The characterization of the sample groups provided insight into the process-structure-property-performance relationships of the resorbable scaffold samples. It was established that the post-processing impacted the scaffold structures, and therefore, sterilization and heat treatment selections should be included within initial design considerations alongside material selection as critical for device development, especially when AM bioresorbable scaffolds for TERM.
Collapse
Affiliation(s)
- Clayton J Culbreath
- Poly-Med, Inc., Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Seth D McCullen
- Poly-Med, Inc., Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - O Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
Trzaskowska M, Vivcharenko V, Benko A, Franus W, Goryczka T, Barylski A, Palka K, Przekora A. Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications. Sci Rep 2024; 14:28137. [PMID: 39548237 PMCID: PMC11568164 DOI: 10.1038/s41598-024-79822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m2/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability. HA granules of high microporosity and SSA can be produced by applying low sintering temperatures (below 900 °C). Nevertheless, although HA sintered at low temperatures shows significantly higher SSA (10-60 m2/g) and improved bioabsorbability, it also exhibits high ion reactivity and cytotoxicity under in vitro conditions. The latter is due to the presence of reaction by-products. Thus, the aim of this study was to fabricate novel biomaterials in the form of granules, composed of hydroxyapatite nanopowder sintered at a high temperature (1100 °C) and a biopolymer matrix: chitosan/agarose or chitosan/β-1,3-glucan (curdlan). It was hypothesized that appropriately selected ingredients would ensure high biocompatibility and microstructural properties comparable to HA sintered at low temperatures. Synthesized granules were subjected to the evaluation of their biological, microstructural, physicochemical, and mechanical properties. The obtained results showed that the developed nanocomposite granules were characterized by a lack of cytotoxicity towards both mouse preosteoblasts and normal human fetal osteoblasts, and supported cell adhesion to their surface. Moreover, produced biomaterials had the ability to induce precipitation of apatite crystals after immersion in simulated body fluid, which, combined with high biocompatibility, should ensure good osseointegration after implantation. Additionally, nanocomposite granules possessed microstructural parameters similar to HA sintered at a low temperature (porosity approx. 50%, SSA approx. 30 m²/g), Young's modulus (5-8 GPa) comparable to cancellous bone, and high fluid absorption capacity. Moreover, the nanocomposites were prone to biodegradation under the influence of enzymatic solution and in an acidic environment. Additionally, it was noted that the hydroxyapatite nanoparticles remaining after the physicochemical dissolution of the biomaterial were easily phagocytosed by mouse macrophages, mouse preosteoblasts, and normal human fetal osteoblasts (in vitro studies). The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability. The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Vladyslav Vivcharenko
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Krzysztof Palka
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20- 618, Lublin, Poland
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
3
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
4
|
Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. RETRACTED: Embedded Sensors with 3D Printing Technology: Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1955. [PMID: 38544218 PMCID: PMC10974650 DOI: 10.3390/s24061955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/17/2024]
Abstract
Embedded sensors (ESs) are used in smart materials to enable continuous and permanent measurements of their structural integrity, while sensing technology involves developing sensors, sensory systems, or smart materials that monitor a wide range of properties of materials. Incorporating 3D-printed sensors into hosting structures has grown in popularity because of improved assembly processes, reduced system complexity, and lower fabrication costs. 3D-printed sensors can be embedded into structures and attached to surfaces through two methods: attaching to surfaces or embedding in 3D-printed sensors. We discussed various additive manufacturing techniques for fabricating sensors in this review. We also discussed the many strategies for manufacturing sensors using additive manufacturing, as well as how sensors are integrated into the manufacturing process. The review also explained the fundamental mechanisms used in sensors and their applications. The study demonstrated that embedded 3D printing sensors facilitate the development of additive sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, India;
| | - Ignacio Llamas Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
5
|
Wang H, Huddleston S, Yang J, Ameer GA. Enabling Proregenerative Medical Devices via Citrate-Based Biomaterials: Transitioning from Inert to Regenerative Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306326. [PMID: 38043945 DOI: 10.1002/adma.202306326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Regenerative medicine aims to restore tissue and organ function without the use of prosthetics and permanent implants. However, achieving this goal has been elusive, and the field remains mostly an academic discipline with few products widely used in clinical practice. From a materials science perspective, barriers include the lack of proregenerative biomaterials, a complex regulatory process to demonstrate safety and efficacy, and user adoption challenges. Although biomaterials, particularly biodegradable polymers, can play a major role in regenerative medicine, their suboptimal mechanical and degradation properties often limit their use, and they do not support inherent biological processes that facilitate tissue regeneration. As of 2020, nine synthetic biodegradable polymers used in medical devices are cleared or approved for use in the United States of America. Despite the limitations in the design, production, and marketing of these devices, this small number of biodegradable polymers has dominated the resorbable medical device market for the past 50 years. This perspective will review the history and applications of biodegradable polymers used in medical devices, highlight the need and requirements for regenerative biomaterials, and discuss the path behind the recent successful introduction of citrate-based biomaterials for manufacturing innovative medical products aimed at improving the outcome of musculoskeletal surgeries.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Samantha Huddleston
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jian Yang
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
6
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
7
|
Jain S, John A, George CE, Johnson RP. Tyrosine-Derived Polymers as Potential Biomaterials: Synthesis Strategies, Properties, and Applications. Biomacromolecules 2023; 24:531-565. [PMID: 36702743 DOI: 10.1021/acs.biomac.2c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptide-based polymers are evolving as promising materials for various biomedical applications. Among peptide-based polymers, polytyrosine (PTyr)-based and l-tyrosine (Tyr)-derived polymers are unique, due to their excellent biocompatibility, degradability, and functional as well as engineering properties. To date, different polymerization techniques (ring-opening polymerization, enzymatic polymerization, condensation polymerization, solution-interfacial polymerization, and electropolymerization) have been used to synthesize various PTyr-based and Tyr-derived polymers. Even though the synthesis starts from Tyr, different synthesis routes yield different polymers (polypeptides, polyarylates, polyurethanes, polycarbonates, polyiminocarbonate, and polyphosphates) with unique functional characteristics, and these polymers have been successfully used for various biomedical applications in the past decades. This Review comprehensively describes the synthesis approaches, classification, and properties of various PTyr-based and Tyr-derived polymers employed in drug delivery, tissue engineering, and biosensing applications.
Collapse
Affiliation(s)
- Supriya Jain
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Alona John
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Christina Elizhabeth George
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
8
|
A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact Mater 2022; 18:138-150. [PMID: 35387155 PMCID: PMC8961309 DOI: 10.1016/j.bioactmat.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs. Developed a six-axis robot arm-based bioprinter to enable all directional cell printing by single- or multi-robot operation. Applied a hydrophobic force-based cell attachment approach to integrate printed cells with complex-shaped vascular scaffolds. Designed a repeated print-and-culture strategy to mimic the in vivo organ development process. Achieved vasculogenesis and angiogenesis of bioprinted blood vessels and long-term survival of bioprinted cardiac tissues.
Collapse
|
9
|
Li T, Wang L, Huang Y, Xin B, Liu S. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1223-1236. [PMID: 32268835 DOI: 10.1080/09205063.2020.1753932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beaded nanofiber is a promising fibrous structure could act as drug delivery system with sustained drug release for regulating cell behaviors used in tissue engineering. Poly (L-lactic acid-co-ε-caprolactone) (PLCL) beaded nanofiber with core-shell structure (130 ± 30 nm) was fabricated and bovine serum albumin (BSA) was encapsulated into the inner layer. The surface morphology and characteristic were evaluated by scanning electron microscopy (SEM), inverted fluorescence microscopy and water contact angle test. Degradation analyses suggested that PLCL/BSA core-shell @ beaded nanofibers could maintain the fibrous framework during 3 weeks. The biocompatibility was investigated by in vitro cultivation of human mesenchymal stem cells (hMSCs) on the surface of PLCL/BSA core-shell @ beaded nanofibers. The proliferation of hMSCs was tested using alamar blue reagent and the spreading morphology of cells was observed by SEM. Corresponding results suggested that beaded nanofibers with core-shell structure could effectively support the attachment and proliferation of cells. PLCL beaded nanofiber with core-shell structure would work as a promising candidate for drug release system and tissue engineering.
Collapse
Affiliation(s)
- Tingxiao Li
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Lei Wang
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Yifan Huang
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Binjie Xin
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Shuang Liu
- School of Chemistry and Chemical engineering, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
10
|
Molina GA, Elizalde-Mata A, Hernández-Martínez ÁR, Fonseca G, Cruz Soto M, Rodríguez-Morales ÁL, Estevez M. Synthesis and Characterization of Inulin-Based Responsive Polyurethanes for Breast Cancer Applications. Polymers (Basel) 2020; 12:polym12040865. [PMID: 32283702 PMCID: PMC7240393 DOI: 10.3390/polym12040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, new polyurethanes (PUs) were prepared by using inulin and polycaprolactone as polyols. Their structure and morphology were determined by Fourier transform infrared spectroscopy (FTIR), Raman dispersive spectroscopy, Nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and scanning electron microscopy (SEM), whereas their mechanical properties were evaluated by a universal testing machine. Additionally, their water uptake, swelling behavior, and degradation were evaluated to be used as drug delivery carriers. Therefore, an anti-cancer drug was loaded to these PUs with 25% of loading efficiency and its release behavior was studied using different theoretical models to unveil its mechanism. Finally, the ability of the new PUs to be used as a clip marker in breast biopsy was evaluated. The results clearly demonstrate that these PUs are safe and can be used as intelligent drug release matrices for targeted drug delivery and exhibits positive results to be used for clip marker and in general for breast cancer applications.
Collapse
Affiliation(s)
- Gustavo A. Molina
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3000, Querétaro 76230, Mexico; (G.A.M.); (A.E.-M.)
| | - Alberto Elizalde-Mata
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3000, Querétaro 76230, Mexico; (G.A.M.); (A.E.-M.)
| | - Ángel R. Hernández-Martínez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3000, Querétaro 76230, Mexico; (Á.R.H.-M.); (G.F.); (Á.L.R.-M.)
| | - Gerardo Fonseca
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3000, Querétaro 76230, Mexico; (Á.R.H.-M.); (G.F.); (Á.L.R.-M.)
| | - Martha Cruz Soto
- Universidad del Valle de México, Campus Querétaro, Blvd. Juriquilla 3000, Querétaro 76230, Mexico;
| | - Ángel Luis Rodríguez-Morales
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3000, Querétaro 76230, Mexico; (Á.R.H.-M.); (G.F.); (Á.L.R.-M.)
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3000, Querétaro 76230, Mexico; (Á.R.H.-M.); (G.F.); (Á.L.R.-M.)
- Correspondence:
| |
Collapse
|
11
|
Ye S, Wang H, Zhao F, Yuan T, Liang J, Fan Y, Zhang X. Evaluating platelet activation related to the degradation of biomaterials using molecular markers. Colloids Surf B Biointerfaces 2019; 184:110516. [PMID: 31569002 DOI: 10.1016/j.colsurfb.2019.110516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023]
Abstract
The effective assessment of platelet activation is an important component of the evaluation of cardiovascular implants. Currently, most evaluation is performed based on the ISO 10993-4 international standard. However, the methods specified in this standard were originally designed for non-degradable materials, and the applicability of these methods to evaluate degradable materials has not been carefully assessed. Here, the platelet activation response was evaluated (using blood from health rabbits) for three typical degradable materials (collagen, polylactic acid, and hydroxyapatite) by measuring the widely used molecular markers CD62 P, CD63, and CD40 L and the three molecular markers PF4, β-TG, and TXB2 that are referenced in the ISO 10993-4 standard. The variations of these six markers were compared in the simulated degradation of the three test materials. The results showed differences in platelet activation with degradation that were strongly related to the surface physicochemical properties. Changes in the surface roughness and contact angle of the materials correlated with changes in the degree of platelet activation. The six tested platelet activation molecular markers show promise for assessment of platelet function in degradable medical devices, providing guidance for quality control strategies and the design and improvement of safe medical devices.
Collapse
Affiliation(s)
- Sheng Ye
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan, China.
| | - Fenghua Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Abstract
Biomaterials as we know them today had their origins in the late 1940s with off-the-shelf commercial polymers and metals. The evolution of materials for medical applications from these simple origins has been rapid and impactful. This review relates some of the early history; addresses concerns after two decades of development in the twenty-first century; and discusses how advanced technologies in both materials science and biology will address concerns, advance materials used at the biointerface, and improve outcomes for patients.
Collapse
Affiliation(s)
- Buddy D. Ratner
- Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Matsuzaki Y, John K, Shoji T, Shinoka T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:1274. [PMID: 31890320 PMCID: PMC6937136 DOI: 10.3390/app9071274] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Currently available synthetic grafts have contributed to improved outcomes in cardiovascular surgery. However, the implementation of these graft materials at small diameters have demonstrated poor patency, inhibiting their use for coronary artery bypass surgery in adults. Additionally, when applied to a pediatric patient population, they are handicapped by their lack of growth ability. Tissue engineered alternatives could possibly address these limitations by producing biocompatible implants with the ability to repair, remodel, grow, and regenerate. A tissue engineered vascular graft (TEVG) generally consists of a scaffold, seeded cells, and the appropriate environmental cues (i.e., growth factors, physical stimulation) to induce tissue formation. This review critically appraises current state-of-the-art techniques for vascular graft production. We additionally examine current graft shortcomings and future prospects, as they relate to cardiovascular surgery, from two major clinical trials.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kelly John
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Chagnon M, Guy LG, Jackson N. Evaluation of Magnesium-based Medical Devices in Preclinical Studies: Challenges and Points to Consider. Toxicol Pathol 2019; 47:390-400. [PMID: 30712470 DOI: 10.1177/0192623318816936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Absorbable metallic implants have been under investigation for more than a century. Animal and human studies have shown that magnesium (Mg) alloys can be safely used in bioresorbable scaffolds. Several cardiovascular and orthopedic biodegradable metallic devices have recently been approved for use in humans. Bioresorbable Mg implants present many advantages when compared to bioabsorbable polymer or nonabsorbable metallic implants, including similar strength and mechanical properties as existing implant-grade metals without the drawbacks of permanence or need for implant removal. Imaging visibility is also improved compared to polymeric devices. Additionally, with Mg-based cardiovascular stents, the risk of late stent thrombosis and need for long-term anti-platelet therapy may be reduced as the host tissue absorbs the Mg degradation products and the morphology of the vessel returns to a near-normal state. Absorbable Mg implants present challenges in the conduct of preclinical animal studies and interpretation of pathology data due to their particular degradation process associated with gas production and release of by-products. This article will review the different uses of Mg implants, the Mg alloys, the distinctive degradation features of Mg, and the challenges confronting pathologists at tissue collection, fixation, imaging, slide preparation, evaluation, and interpretation of Mg implants.
Collapse
|
15
|
Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve-A Review of Current Approaches. Adv Healthc Mater 2017; 6. [PMID: 29171921 DOI: 10.1002/adhm.201700918] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo. Thus, this review assesses clinically available heart valve prostheses, outlines the design criteria for developing a heart valve, and evaluates three types of biomaterials (decellularized, natural, and synthetic) for tissue engineering heart valves. While significant progress has been made in biomaterials and fabrication techniques, a viable tissue engineered heart valve has yet to be translated into a clinical product. Thus, current strategies and future perspectives are also discussed to facilitate the development of new approaches and considerations for heart valve tissue engineering.
Collapse
Affiliation(s)
- Aline L. Y. Nachlas
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Michael E. Davis
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Children's Heart Research & Outcomes (HeRO) Center Children's Healthcare of Atlanta & Emory University Atlanta GA 30322 USA
| |
Collapse
|
16
|
Brockman KS, Lai BFL, Kizhakkedathu JN, Santerre JP. Hemocompatibility of Degrading Polymeric Biomaterials: Degradable Polar Hydrophobic Ionic Polyurethane versus Poly(lactic-co-glycolic) Acid. Biomacromolecules 2017. [PMID: 28621927 DOI: 10.1021/acs.biomac.7b00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of degradable polymers in vascular tissue regeneration has sparked the need to characterize polymer biocompatibility during degradation. While tissue compatibility has been frequently addressed, studies on polymer hemocompatibility during degradation are limited. The current study evaluated the differences in hemocompatibility (platelet response, complement activation, and coagulation cascade initiation) between as-made and hydrolyzed poly(lactic-co-glycolic) acid (PLGA) and degradable polar hydrophobic ionic polyurethane (D-PHI). Platelet activation decreased (in whole blood) and platelet adhesion decreased (in blood without leukocytes) for degraded versus as-made PLGA. D-PHI showed minimal hemocompatibility changes over degradation. Leukocytes played a major role in mediating platelet activation for samples and controls, as well as influencing platelet-polymer adhesion on the degraded materials. This study demonstrates the importance of assessing the blood compatibility of biomaterials over the course of degradation since the associated changes in surface chemistry and physical state could significantly change biomaterial hemocompatibility.
Collapse
Affiliation(s)
- Kathryne S Brockman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3R5, Canada.,Institute of Biomaterials and Biomedical Engineering, Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5G 1M1, Canada
| | - Benjamin F L Lai
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - J Paul Santerre
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3R5, Canada.,Institute of Biomaterials and Biomedical Engineering, Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5G 1M1, Canada.,Faculty of Dentistry, University of Toronto , Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
17
|
Marei NH, El-Sherbiny IM, Lotfy A, El-Badawy A, El-Badri N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int J Biol Macromol 2016; 93:9-19. [PMID: 27554939 DOI: 10.1016/j.ijbiomac.2016.08.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/01/2023]
Abstract
Electrospinning of polymers is the most commonly used technique for nanofiber fabrication. polylactic acid (PLA) and polycaprolactone (PCL) have been shown to be ideal for nanofiber preparation in various biomedical applications, due to characteristics such as biodegradablity and their ability to promote the cell growth, similar to native tissues. The aim of this study was to develop biocompatible and biodegradable PLA and PCL-based nanofibrous scaffolds for enhancing stem cell growth and proliferation. The scaffolds were prepared by electrospinning, and their physicochemical properties were studied using Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The surface morphology of the developed scaffolds was determined using scanning electron microscopy (SEM). Mesenchymal stem cells (MSCs), derived from both adipose tissue and bone marrow, were seeded onto the prepared nanofibrous scaffolds. The effect of scaffold type, and structural characteristics on survival and proliferation of MSCs were evaluated. Our results show that after full physicochemical characterization of PCL and PLA nanofibrous scaffolds both were safe and non-toxic to the evaluated cells and both scaffolds supported cell attachment and proliferation of bone marrow and adipose tissue-derived MSCs.
Collapse
Affiliation(s)
- Narguess H Marei
- Centre of Excellence of Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | | | - Ahmed Lotfy
- Centre of Excellence of Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Ahmed El-Badawy
- Centre of Excellence of Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Nagwa El-Badri
- Centre of Excellence of Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
18
|
Dutau H, Musani AI, Laroumagne S, Darwiche K, Freitag L, Astoul P. Biodegradable Airway Stents - Bench to Bedside: A Comprehensive Review. Respiration 2015; 90:512-521. [PMID: 26613524 DOI: 10.1159/000442054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/22/2015] [Indexed: 04/13/2024] Open
Abstract
Airway stents are indicated to treat symptomatic narrowing or to close fistulas of the central airways. They are generally divided into two types: the silicone stents and the metallic stents. Unlike in malignancies, removability is a major objective of temporary stenting in benign conditions, which poses the challenge of a new rigid bronchoscopic procedure under general anesthesia and stent removal with all its attendant risks and costs. The concept of a biodegradable (BD) stent that could maintain the patency of an airway for a predetermined duration of time is very appealing. These BD stents would gradually degrade and eventually vanish from the airway once they are no longer needed. Such stents are currently an area of intense research. Another very promising concept of drug delivery with such stents is also a very exciting area of current research. The aim of this comprehensive review is to discuss all pertinent available literature on the use of BD materials in various clinical applications and to extensively review all animal and humans trials involving BD airway stents.
Collapse
Affiliation(s)
- Hervé Dutau
- Thoracic Oncology, Pleural Diseases and Interventional Pulmonology Department, North University Hospital, Marseille, France
| | | | | | | | | | | |
Collapse
|
19
|
Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med 2014; 10:11-28. [PMID: 25066525 DOI: 10.1002/term.1944] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 04/17/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternative sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augmenting injured or impaired myocardium, with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds - composed of natural or synthetic biomaterials or decellularized extracellular matrix - that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue; and finally, injectable biomaterials (hydrogels) designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed.
Collapse
Affiliation(s)
- Lewis A Reis
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Loraine L Y Chiu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Nicole Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Lara Fu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| |
Collapse
|