1
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
2
|
Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater Today Bio 2023; 19:100559. [PMID: 36798535 PMCID: PMC9926023 DOI: 10.1016/j.mtbio.2023.100559] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
With the widespread prevalence of drug-resistant pathogens, traditional antibiotics have limited effectiveness and do not yield the desired outcomes. Recently, alternative antibacterial therapies based on ultrasound (US) have been explored to overcome the crisis of bacterial pathogens. Antimicrobial sonodynamic therapy (aSDT) offers an excellent solution that relies on US irradiation to produce reactive oxygen species (ROS) and achieve antibiotic-free mediated antimicrobial effects. In addition, aSDT possesses the advantage of superior tissue penetrability of US compared to light irradiation, demonstrating great feasibility in treating deep infections. Although existing conventional sonosensitizers can produce ROS for antimicrobial activity, some limitations, such as low penetration rate, nonspecific distribution and poor ROS production under hypoxic conditions, result in suboptimal sterilization in aSDT. Recently, emerging nanosonosensitizers have enormous advantages as high-performance agents in aSDT, which overcome the deficiencies of conventional sonosensitizers as described above. Thus, nanosonosensitizer-mediated aSDT has a bright future for the management of bacterial infections. This review classifies the current available nanosonosensitizers and provides an overview of the mechanisms, biomedical applications, recent advances and perspectives of aSDT.
Collapse
|
3
|
Lee IH, Kim SH, Kang DH. Quercetin mediated antimicrobial photodynamic treatment using blue light on Escherichia coli O157:H7 and Listeria monocytogenes. Curr Res Food Sci 2022; 6:100428. [PMID: 36632435 PMCID: PMC9826937 DOI: 10.1016/j.crfs.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Interest in using an antimicrobial photodynamic treatment (aPDT) for the microbial decontamination of food has been growing. In this study, quercetin, a substance found ubiquitously in plants, was used as a novel exogenous photosensitizer with 405 nm blue light (BL) for the aPDT on foodborne pathogens, and the inactivation mechanism was elucidated. The inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in PBS solution by the quercetin and BL combination treatment reached a log reduction of 6.2 and more than 7.55 at 80 J/cm2 (68 min 21 s), respectively. When EDTA was added to investigate the reason for different resistance between two bacteria, the effect of aPDT was enhanced against E. coli O157:H7 but not L. monocytogenes. This result indicated that the lipopolysaccharide of Gram-negative bacteria operated as a protective barrier. It was experimentally demonstrated that quercetin generated the superoxide anion and hydrogen peroxide as the reactive oxygen species that oxidize and inactivate cell components. The damage to the bacterial cell membrane by aPDT was evaluated by propidium iodide, where the membrane integrity significantly (P < 0.05) decreased from 40 J/cm2 compared to control. In addition, DNA integrity of bacteria was significantly (P < 0.05) more decreased after aPDT than BL treatment. The inactivation results could be applied in liquid food industries for decontamination of foodborne pathogens, and the mechanisms data was potentially utilized for further studies about aPDT using quercetin.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Hwan Kim
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea,Institutes of Green Bio Science and Technology, Seoul National University, Pyeong-Chang, Gangwon-do, 25354, Republic of Korea,Corresponding author. Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Yan Q, Mei J, Li D, Xie J. Application of sonodynamic technology and sonosensitizers in food sterilization: a review of developments, trends and challenges. Crit Rev Food Sci Nutr 2022; 64:740-759. [PMID: 35950483 DOI: 10.1080/10408398.2022.2108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety and food waste have always been hot topics of discussion in recent years. However, the infection of human pathogenic bacteria and the waste of food resources caused by microbial-contaminated food remains common. Although traditional sterilization technology has been very mature, it causes changes in food flavor and excessive energy consumption to a certain extent. Moreover, the widespread bacterial resistance has also sounded a warning for researchers and finding a new alternative to antibiotics is urgently needed. The application of sonodynamic sterilization technology in medical treatment has aroused the interest of researchers. It provides ideas for new food sterilization technology. As a new non-thermal sterilization technology, sonodynamic sterilization technology has strong penetration, safety, less residue and by-products, and will less change the quality of the food itself. Therefore, sonodynamic sterilization technology has great potential applied in food sterilization technology. This review describes the concept of sonodynamic sterilization technology, the sterilization mechanism of sonodynamic sterilization and the inactivation mechanism of various pathogens, the classification and application of sonosensitizers, and the ultrasonic technology in sonodynamic sterilization in the application over the recent years. It provides a scientific reference for the application of sonodynamic sterilization technology in the field of food sterilization.
Collapse
Affiliation(s)
- Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Zhang Z, Qin J, Wang Z, Chen F, Liao X, Hu X, Dong L. Sodium copper chlorophyll mediated photodynamic treatment inactivates Escherichia coli via oxidative damage. Food Res Int 2022; 157:111472. [PMID: 35761703 DOI: 10.1016/j.foodres.2022.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Photodynamic technology (PDT) is an emerging non-thermal processing technique, however, due to a lack of edible photosensitizers, its application to the food industry is limited. To better understand sodium copper chlorophyll (SCC) feasibility as a photosensitizer, we analyzed the effects of PDT-SCC on Escherichia coli O157:H7 inactivation using different lighting times (15, 30, 45, 60, and 75 min), lighting power (30, 60, 90, 120, and 150 W), and SCC concentrations (2, 4, 6, 8, and 10 mM). We showed that bactericidal effects depended on all three parameters, but the most suitable sterilization condition for E. coli occurred at 10 mM SCC, for 60 min at 120 W. We also investigated cell morphology, reactive oxygen species (ROS) production, the activity of three oxidative response enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)), and ompA, ompF, uvrA, and recA expression. When compared with the control group, PDT-SCC destroyed bacterial morphology, increased ROS production, decreased antioxidant enzyme activity (SOD, CAT, and GPX), down-regulated membrane protein gene expression, including ompA and ompF, and up-regulated the DNA damage-repair related genes, uvrA and recA. Thus, bacterial rupture caused by oxidative damage could be the main mechanism underpinning PDT-SCC action.
Collapse
Affiliation(s)
- Zequn Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jianran Qin
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhe Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Rogowska M, Bruzell E, Valen H, Nilsen O. Photoactive Zr-aromatic hybrid thin films made by molecular layer deposition. RSC Adv 2022; 12:15718-15727. [PMID: 35685698 PMCID: PMC9131731 DOI: 10.1039/d2ra02004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
The principle of antimicrobial photodynamic therapy (PDT) is appealing because it can be controlled by an external light source and possibly the use of durable materials. However, to utilise such surfaces requires a process for their production that allows for coating on even complex geometries. We have therefore explored the ability of the emerging molecular layer deposition (MLD) technique to produce and tune PDT active materials. This study demonstrates how the type of aromatic ligand influences the optical and antimicrobial properties of photoactive Zr-organic hybrid thin films made by MLD. The three aromatic dicarboxylic acids: 2,5-dihydroxy-1,4-benzenedicarboxylic acid, 2-amino-1,4-benzenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid have been combined with ZrCl4 to produce hybrid coatings. The first system has not been previously described by MLD and is therefore more thoroughly investigated using in situ quartz crystal microbalance (QCM), Fourier transform infrared (FTIR) and UV-Vis spectroscopy. The antibacterial phototoxic effects of Zr-organic hybrids have been explored in the Staphylococcus aureus bacteria model using a UVA/blue light source. Films based on the 2,6-naphthalenedicarboxylic acid linker significantly reduced the number of viable bacteria by 99.9%, while no apparent activity was observed for the two other photoactive systems. Our work thus provides evidence that the MLD technique is a suitable tool to produce high-quality novel materials for possible applications in antimicrobial PDT, however it requires a careful selection of aromatic ligands used to construct photoactive materials. Photoactive organic–inorganic hybrid thin films for potential use in antimicrobial photodynamic therapy (PDT) were fabricated based on Zr clusters and three different aromatic dicarboxylic acid linkers using the molecular layer deposition (MLD) technique.![]()
Collapse
Affiliation(s)
- Melania Rogowska
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, 0315, Oslo, Norway
| | - Ellen Bruzell
- Nordic Institute of Dental Materials, 0855, Oslo, Norway
| | - Håkon Valen
- Nordic Institute of Dental Materials, 0855, Oslo, Norway
| | - Ola Nilsen
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, 0315, Oslo, Norway
| |
Collapse
|
7
|
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry-A Review. Foods 2021; 10:2587. [PMID: 34828868 PMCID: PMC8621587 DOI: 10.3390/foods10112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilms cause problems in the food industry due to their persistence and incompetent hygiene processing technologies. Interest in photodynamic inactivation (PDI) for combating biofilms has increased in recent years. This technique can induce microbial cell death, reduce cell attachment, ruin biofilm biomolecules and eradicate structured biofilms without inducing microbial resistance. This review addresses microbial challenges posed by biofilms in food environments and highlights the advantages of PDI in preventing and eradicating microbial biofilm communities. Current findings of the antibiofilm efficiencies of this technique are summarized. Additionally, emphasis is given to its potential mechanisms and factors capable of influencing biofilm communities, as well as promising hurdle strategies.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Emmanuel Kyere
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
8
|
Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft. Int J Mol Sci 2020; 21:ijms21186932. [PMID: 32967302 PMCID: PMC7554952 DOI: 10.3390/ijms21186932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
A spacecraft is a confined system that is inhabited by a changing microbial consortium, mostly originating from life-supporting devices, equipment collected in pre-flight conditions, and crewmembers. Continuous monitoring of the spacecraft’s bioburden employing culture-based and molecular methods has shown the prevalence of various taxa, with human skin-associated microorganisms making a substantial contribution to the spacecraft microbiome. Microorganisms in spacecraft can prosper not only in planktonic growth mode but can also form more resilient biofilms that pose a higher risk to crewmembers’ health and the material integrity of the spacecraft’s equipment. Moreover, bacterial biofilms in space conditions are characterized by faster formation and acquisition of resistance to chemical and physical effects than under the same conditions on Earth, making most decontamination methods unsafe. There is currently no reported method available to combat biofilm formation in space effectively and safely. However, antibacterial photodynamic inactivation based on natural photosensitizers, which is reviewed in this work, seems to be a promising method.
Collapse
|
10
|
Seidi Damyeh M, Mereddy R, Netzel ME, Sultanbawa Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr Rev Food Sci Food Saf 2020; 19:1727-1759. [PMID: 33337095 DOI: 10.1111/1541-4337.12583] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Consumer awareness on the side effects of chemical preservatives has increased the demand for natural preservation technologies. An efficient and sustainable alternative to current conventional preservation techniques should guarantee food safety and retain its quality with minimal side effects. Photosensitization, utilizing light and a natural photosensitizer, has been postulated as a viable and green alternative to the current conventional preservation techniques. The potential of curcumin as a natural photosensitizer is reviewed in this paper as a practical guide to develop a safe and effective decontamination tool for industrial use. The fundamentals of the photosensitization mechanism are discussed, with the main emphasis on the natural photosensitizer, curcumin, and its application to inactivate microorganisms as well as to enhance the shelf life of foods. Photosensitization has shown promising results in inactivating a wide spectrum of microorganisms with no reported microbial resistance due to its particular lethal mode of targeting nucleic acids. Curcumin as a natural photosensitizer has recently been investigated and demonstrated efficacy in decontamination and delaying spoilage. Moreover, studies have shown the beneficial impact of an appropriate encapsulation technique to enhance the cellular uptake of photosensitizers, and therefore, the phototoxicity. Further studies relating to improved delivery of natural photosensitizers with inherent poor solubility should be conducted. Also, detailed studies on various food products are warranted to better understand the impact of encapsulation on curcumin photophysical properties, photo-driven release mechanism, and nutritional and organoleptic properties of treated foods.
Collapse
Affiliation(s)
- Maral Seidi Damyeh
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD, Australia
| | - Michael E Netzel
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
11
|
Sæbø Pettersen K, Sundaram AYM, Skjerdal T, Wasteson Y, Kijewski A, Lindbäck T, Aspholm M. Exposure to Broad-Spectrum Visible Light Causes Major Transcriptomic Changes in Listeria monocytogenes EGDe. Appl Environ Microbiol 2019; 85:e01462-19. [PMID: 31492665 PMCID: PMC6821972 DOI: 10.1128/aem.01462-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes, the causative agent of the serious foodborne disease listeriosis, can rapidly adapt to a wide range of environmental stresses, including visible light. This study shows that exposure of the L. monocytogenes EGDe strain to low-intensity, broad-spectrum visible light inhibited bacterial growth and caused altered multicellular behavior during growth on semisolid agar compared to when the bacteria were grown in complete darkness. These light-dependent changes were observed regardless of the presence of the blue light receptor (Lmo0799) and the stressosome regulator sigma B (SigB), which have been suggested to be important for the ability of L. monocytogenes to respond to blue light. A genome-wide transcriptional analysis revealed that exposure of L. monocytogenes EGDe to broad-spectrum visible light caused altered expression of 2,409 genes belonging to 18 metabolic pathways compared to bacteria grown in darkness. The light-dependent differentially expressed genes are involved in functions such as glycan metabolism, cell wall synthesis, chemotaxis, flagellar synthesis, and resistance to oxidative stress. Exposure to light conferred reduced bacterial motility in semisolid agar, which correlates well with the light-dependent reduction in transcript levels of flagellar and chemotaxis genes. Similar light-induced reduction in growth and motility was also observed in two different L. monocytogenes food isolates, suggesting that these responses are typical for L. monocytogenes Together, the results show that even relatively small doses of broad-spectrum visible light cause genome-wide transcriptional changes, reduced growth, and motility in L. monocytogenesIMPORTANCE Despite major efforts to control L. monocytogenes, this pathogen remains a major problem for the food industry, where it poses a continuous risk of food contamination. The ability of L. monocytogenes to sense and adapt to different stressors in the environment enables it to persist in many different niches, including food production facilities and in food products. The present study shows that exposure of L. monocytogenes to low-intensity broad-spectrum visible light reduces its growth and motility and alters its multicellular behavior. Light exposure also caused genome-wide changes in transcript levels, affecting multiple metabolic pathways, which are likely to influence the bacterial physiology and lifestyle. In practical terms, the data presented in this study suggest that broad-spectrum visible light is an important environmental variable to consider as a strategy to improve food safety by reducing L. monocytogenes contamination in food production environments.
Collapse
Affiliation(s)
- Kristin Sæbø Pettersen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | - Arvind Y M Sundaram
- Norwegian Sequencing Centre, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
13
|
Al-Asmari F, Mereddy R, Sultanbawa Y. The effect of photosensitization mediated by curcumin on storage life of fresh date (Phoenix dactylifera L.) fruit. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
15
|
Al-Asmari F, Mereddy R, Sultanbawa Y. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Liu F, Li Z, Cao B, Wu J, Wang Y, Xue Y, Xu J, Xue C, Tang QJ. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Res Int 2016; 87:204-210. [DOI: 10.1016/j.foodres.2016.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
17
|
Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract 2015; 24 Suppl 1:14-28. [PMID: 24820409 PMCID: PMC6489067 DOI: 10.1159/000362416] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.
Collapse
Affiliation(s)
- Ludmil Benov
- *Ludmil Benov, Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
18
|
Lui GY, Roser D, Corkish R, Ashbolt N, Jagals P, Stuetz R. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:185-196. [PMID: 24946032 DOI: 10.1016/j.scitotenv.2014.05.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options.
Collapse
Affiliation(s)
- Gough Yumu Lui
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - David Roser
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Richard Corkish
- School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Nicholas Ashbolt
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; School of Public Health , Room 3-57D, South Academic Building, University of Alberta, Edmonton, Alberta, T6G 2G7, Canada.
| | - Paul Jagals
- School of Population Health, University of Queensland, Brisbane, 4006, Australia.
| | - Richard Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Brovko L, Anany H, Bayoumi M, Giang K, Kunkel E, Lim E, Naboka O, Rahman S, Li J, Filipe C, Griffiths M. Antimicrobial light-activated materials: towards application for food and environmental safety. J Appl Microbiol 2014; 117:1260-6. [DOI: 10.1111/jam.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/20/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Affiliation(s)
- L. Brovko
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
| | - H. Anany
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
- Microbiology Department; Faculty of Science; Ain Shams University; Cairo Egypt
| | - M. Bayoumi
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
- Food Control Department; Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - K. Giang
- Department of Chemical Engineering; McMaster University; Hamilton ON Canada
| | - E. Kunkel
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
| | - E. Lim
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
| | - O. Naboka
- Department of Chemical Engineering; McMaster University; Hamilton ON Canada
| | - S. Rahman
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
| | - J. Li
- Department of Chemical Engineering; McMaster University; Hamilton ON Canada
| | - C.D.M. Filipe
- Department of Chemical Engineering; McMaster University; Hamilton ON Canada
| | - M.W. Griffiths
- Canadian Research Institute for Food Safety; University of Guelph; Guelph ON Canada
| |
Collapse
|
20
|
Antibacterial Photosensitization-Based Treatment for Food Safety. FOOD ENGINEERING REVIEWS 2013. [DOI: 10.1007/s12393-013-9070-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Endarko E, Maclean M, Timoshkin IV, MacGregor SJ, Anderson JG. High-Intensity 405 nm Light Inactivation of Listeria monocytogenes. Photochem Photobiol 2012; 88:1280-6. [DOI: 10.1111/j.1751-1097.2012.01173.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|