1
|
The Uncovered Function of the Drosophila GBA1a-Encoded Protein. Cells 2021; 10:cells10030630. [PMID: 33809074 PMCID: PMC8000066 DOI: 10.3390/cells10030630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Human GBA1 encodes lysosomal acid β-glucocerebrosidase (GCase), which hydrolyzes cleavage of the beta-glucosidic linkage of glucosylceramide (GlcCer). Mutations in this gene lead to reduced GCase activity, accumulation of glucosylceramide and glucosylsphingosine, and development of Gaucher disease (GD). Drosophila melanogaster has two GBA1 orthologs. Thus far, GBA1b was documented as a bone fide GCase-encoding gene, while the role of GBA1a encoded protein remained unclear. In the present study, we characterized a mutant variant of the fly GBA1a, which underwent ERAD and mildly activated the UPR machinery. RNA-seq analyses of homozygous mutant flies revealed upregulation of inflammation-associated as well as of cell-cycle related genes and reduction in programmed cell death (PCD)-associated genes, which was confirmed by qRT-PCR. We also observed compromised cell death in the midgut of homozygous larvae and a reduction in pupation. Our results strongly indicated that GBA1a-encoded protein plays a role in midgut maturation during larvae development.
Collapse
|
2
|
Zhang S, Yeap XY, DeBerge M, Naresh NK, Wang K, Jiang Z, Wilcox JE, White SM, Morrow JP, Burridge PW, Procissi D, Scott EA, Frazier W, Thorp EB. Acute CD47 Blockade During Ischemic Myocardial Reperfusion Enhances Phagocytosis-Associated Cardiac Repair. JACC Basic Transl Sci 2017; 2:386-397. [PMID: 28920097 PMCID: PMC5595371 DOI: 10.1016/j.jacbts.2017.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our data suggest that, after a myocardial infarction, integrin-associated protein CD47 on cardiac myocytes is elevated. In culture, increased CD47 on the surface of dying cardiomyocytes impairs phagocytic removal by immune cell macrophages. After myocardial ischemia and reperfusion, acute CD47 inhibition with blocking antibodies enhanced dead myocyte clearance by cardiac phagocytes and also improved the resolution of cardiac inflammation, reduced infarct size, and preserved cardiac contractile function. Early targeting of CD47 in the myocardium after reperfusion may be a new strategy to enhance wound repair in the ischemic heart.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xin-Yi Yeap
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Matthew DeBerge
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Nivedita K Naresh
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kevin Wang
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zhengxin Jiang
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jane E Wilcox
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Steven M White
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel Procissi
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Evan A Scott
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - William Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Edward B Thorp
- Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
3
|
Zhang S, Yeap XY, Grigoryeva L, Dehn S, DeBerge M, Tye M, Rostlund E, Schrijvers D, Zhang ZJ, Sumagin R, Tourtellotte WG, Lee D, Lomasney J, Morrow J, Thorp EB. Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. J Mol Cell Cardiol 2015; 87:171-9. [PMID: 26316303 DOI: 10.1016/j.yjmcc.2015.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/29/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mobilization of the innate immune response to clear and metabolize necrotic and apoptotic cardiomyocytes is a prerequisite to heart repair after cardiac injury. Suboptimal kinetics of dying myocyte clearance leads to secondary necrosis, and in the case of the heart, increased potential for collateral loss of neighboring non-regenerative myocytes. Despite the importance of myocyte phagocytic clearance during heart repair, surprisingly little is known about its underlying cell and molecular biology. OBJECTIVE To determine if phagocytic receptor MERTK is expressed in human hearts and to elucidate key sequential steps and phagocytosis efficiency of dying adult cardiomyocytes, by macrophages. RESULTS In infarcted human hearts, expression profiles of the phagocytic receptor MER-tyrosine kinase (MERTK) mimicked that found in experimental ischemic mouse hearts. Electron micrographs of myocardium identified MERTK signal along macrophage phagocytic cups and Mertk-/- macrophages contained reduced digested myocyte debris after myocardial infarction. Ex vivo co-culture of primary macrophages and adult cardiomyocyte apoptotic bodies revealed reduced engulfment relative to resident cardiac fibroblasts. Inefficient clearance was not due to the larger size of myocyte apoptotic bodies, nor were other key steps preceding the formation of phagocytic synapses significantly affected; this included macrophage chemotaxis and direct binding of phagocytes to myocytes. Instead, suppressed phagocytosis was directly associated with myocyte-induced inactivation of MERTK, which was partially rescued by genetic deletion of a MERTK proteolytic susceptibility site. CONCLUSION Utilizing an ex vivo co-cultivation approach to model key cellular and molecular events found in vivo during infarction, cardiomyocyte phagocytosis was found to be inefficient, in part due to myocyte-induced shedding of macrophage MERTK. These findings warrant future studies to identify other cofactors of macrophage-cardiomyocyte cross-talk that contribute to cardiac pathophysiology.
Collapse
Affiliation(s)
- Shuang Zhang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Xin-Yi Yeap
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Lubov Grigoryeva
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Shirley Dehn
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Matthew DeBerge
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Michael Tye
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Emily Rostlund
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | | | | | - Ronen Sumagin
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Warren G Tourtellotte
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Daniel Lee
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Jon Lomasney
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - John Morrow
- Department of Cardiology and Division of Molecular Medicine, Columbia University, New York, NY, USA
| | - Edward B Thorp
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Balogh A, Németh M, Koloszár I, Markó L, Przybyl L, Jinno K, Szigeti C, Heffer M, Gebhardt M, Szeberényi J, Müller DN, Sétáló G, Pap M. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 2015; 19:1080-98. [PMID: 24722832 DOI: 10.1007/s10495-014-0986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.
Collapse
Affiliation(s)
- András Balogh
- Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|