1
|
Drug transporters are implicated in the diffusion of tacrolimus into the T lymphocyte in kidney and liver transplant recipients: Genetic, mRNA, protein expression, and functionality. Drug Metab Pharmacokinet 2022; 47:100473. [DOI: 10.1016/j.dmpk.2022.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
|
2
|
Behnam Sani K, Sawitzki B. Immune monitoring as prerequisite for transplantation tolerance trials. Clin Exp Immunol 2017; 189:158-170. [PMID: 28518214 DOI: 10.1111/cei.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Ever since its first application in clinical medicine, scientists have been urged to induce tolerance towards foreign allogeneic transplants and thus avoid rejection by the recipient's immune system. This would circumvent chronic use of immunosuppressive drugs (IS) and thus avoid development of IS-induced side effects, which are contributing to the still unsatisfactory long-term graft and patient survival after solid organ transplantation. Although manifold strategies of tolerance induction have been described in preclinical models, only three therapeutic approaches have been utilized successfully in a still small number of patients. These approaches are based on (i) IS withdrawal in spontaneous operational tolerant (SOT) patients, (ii) induction of a mixed chimerism and (iii) adoptive transfer of regulatory cells. Results of clinical trials utilizing these approaches show that tolerance induction does not work in all patients. Thus, there is a need for reliable biomarkers, which can be used for patient selection and post-therapeutic immune monitoring of safety, success and failure. In this review, we summarize recent achievements in the identification and validation of such immunological assays and biomarkers, focusing mainly on kidney and liver transplantation. From the published findings so far, it has become clear that indicative biomarkers may vary between different therapeutic approaches applied and organs transplanted. Also, patient numbers studied so far are very small. This is the main reason why nearly all described parameters lack validation and reproducibility testing in large clinical trials, and are therefore not yet suitable for clinical practice.
Collapse
Affiliation(s)
- K Behnam Sani
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S1-20. [PMID: 26977997 DOI: 10.1097/ftd.0000000000000287] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With current treatment regimens, a relatively high proportion of transplant recipients experience underimmunosuppression or overimmunosuppression. Recently, several promising biomarkers have been identified for determining patient alloreactivity, which help in assessing the risk of rejection and personal response to the drug; others correlate with graft dysfunction and clinical outcome, offering a realistic opportunity for personalized immunosuppression. This consensus document aims to help tailor immunosuppression to the needs of the individual patient. It examines current knowledge on biomarkers associated with patient risk stratification and immunosuppression requirements that have been generally accepted as promising. It is based on a comprehensive review of the literature and the expert opinion of the Biomarker Working Group of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. The quality of evidence was systematically weighted, and the strength of recommendations was rated according to the GRADE system. Three types of biomarkers are discussed: (1) those associated with the risk of rejection (alloreactivity/tolerance), (2) those reflecting individual response to immunosuppressants, and (3) those associated with graft dysfunction. Analytical aspects of biomarker measurement and novel pharmacokinetic-pharmacodynamic models accessible to the transplant community are also addressed. Conventional pharmacokinetic biomarkers may be used in combination with those discussed in this article to achieve better outcomes and improve long-term graft survival. Our group of experts has made recommendations for the most appropriate analysis of a proposed panel of preliminary biomarkers, most of which are currently under clinical evaluation in ongoing multicentre clinical trials. A section of Next Steps was also included, in which the Expert Committee is committed to sharing this knowledge with the Transplant Community in the form of triennial updates.
Collapse
|
4
|
Dieterlen MT, John K, Haase S, Garbade J, Tarnok A, Mohr FW, Bittner HB, Barten MJ. Effect of confounding factors on a phospho-flow assay of ribosomal S6 protein for therapeutic drug monitoring of the mTOR-inhibitor everolimus in heart transplanted patients. Biomarkers 2016; 22:86-92. [DOI: 10.1080/1354750x.2016.1210676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Target Enzyme Activity and Phosphorylation of Pathway Molecules As Specific Biomarkers in Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S43-9. [DOI: 10.1097/ftd.0000000000000288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Assessment of Immunological Biomarkers in the First Year after Heart Transplantation. DISEASE MARKERS 2015; 2015:678061. [PMID: 26491215 PMCID: PMC4605209 DOI: 10.1155/2015/678061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/03/2022]
Abstract
Background. Pharmacodynamic biomarkers that detect changes of immunological functions have been recognized as a helpful tool to increase the efficacy of immunosuppressive drug therapies. However, physiological changes of immunological biomarkers following transplantation are not investigated. Therefore, we assessed frequently used immunological biomarkers of the circulating blood in the first year following heart transplantation (HTx). Methods. Activation markers CD25 and CD95, intracellular cytokines IL-2 and IFNγ, chemokines IP10 and MIG, and subsets of dendritic cells as well as antibodies against human leukocyte antigens (HLA) and major histocompatibility complex class I-related chain A (MICA) antigens were analyzed at different time points using flow cytometry and Luminex xMAP technology. Results. Expression of IL-2, IFNγ, and plasmacytoid dendritic cells (pDCs) significantly increased (p < 0.01) during the first year. Anti-HLA antibodies decreased continuously, while anti-MICA antibodies showed minor increase within the first year. An association between percentage of pDCs and anti-MICA antibody positivity was proven. pDCs, IFNγ-producing T cells, and IP10 concentration were associated in a stronger way with age and gender of HTx recipients than with antibodies against HLA or MICA. Conclusions. We conclude that certain immunological biomarkers of the circulating blood change during the first year after HTx. These changes should be considered for interpretation of biomarkers after transplantation.
Collapse
|
7
|
Impact of recent innovations in the use of mass cytometry in support of drug development. Drug Discov Today 2015; 20:1169-75. [PMID: 26092491 DOI: 10.1016/j.drudis.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/11/2015] [Accepted: 06/08/2015] [Indexed: 01/15/2023]
Abstract
Cytometry by time-of-flight (CyTOF) is a novel technology for the real-time analysis of single cells. CyTOF is a significant advance in fields including immunology, hematology, and oncology. It resolves multiple metal-conjugated probes per cell with minimal signal overlap, which maximizes the information obtained from each individual sample. CyTOF provides the ability to phenotypically and functionally profile cells from normal and diseased states. Single cell technologies enable researchers to measure the effects of a drug at the single cell level and better understand its mechanism of action. Here, we discuss novel instruments for the analysis of individual biological cells, the impact of recent innovations in support of drug development, and the important roles of CyTOF in drug profiling.
Collapse
|
8
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
9
|
Dieterlen MT, Mohr FW, Reichenspurner H, Barten MJ. Clinical value of flow cytometric assessment of dendritic cell subsets in peripheral blood after solid organ transplantation. Cytometry A 2015; 87:377-9. [PMID: 25808610 DOI: 10.1002/cyto.a.22655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University Hospital Leipzig, Heart Center, HELIOS Clinic, Leipzig, Germany
| | | | | | | |
Collapse
|
10
|
Atkuri KR, Stevens JC, Neubert H. Mass cytometry: a highly multiplexed single-cell technology for advancing drug development. Drug Metab Dispos 2015; 43:227-33. [PMID: 25349123 DOI: 10.1124/dmd.114.060798] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Advanced single-cell analysis technologies (e.g., mass cytometry) that help in multiplexing cellular measurements in limited-volume primary samples are critical in bridging discovery efforts to successful drug approval. Mass cytometry is the state-of-the-art technology in multiparametric single-cell analysis. Mass cytometers (also known as cytometry by time-of-flight or CyTOF) combine the cellular analysis principles of traditional fluorescence-based flow cytometry with the selectivity and quantitative power of inductively coupled plasma-mass spectrometry. Standard flow cytometry is limited in the number of parameters that can be measured owing to the overlap in signal when detecting fluorescently labeled antibodies. Mass cytometry uses antibodies tagged to stable isotopes of rare earth metals, which requires minimal signal compensation between the different metal tags. This unique feature enables researchers to seamlessly multiplex up to 40 independent measurements on single cells. In this overview we first present an overview of mass cytometry and compare it with traditional flow cytometry. We then discuss the emerging and potential applications of CyTOF technology in the pharmaceutical industry, including quantitative and qualitative deep profiling of immune cells and their applications in assessing drug immunogenicity, extensive mapping of signaling networks in single cells, cell surface receptor quantification and multiplexed internalization kinetics, multiplexing sample analysis by barcoding, and establishing cell ontologies on the basis of phenotype and/or function. We end with a discussion of the anticipated impact of this technology on drug development lifecycle with special emphasis on the utility of mass cytometry in deciphering a drug's pharmacokinetics and pharmacodynamics relationship.
Collapse
Affiliation(s)
- Kondala R Atkuri
- Pharmacokinetics, Dynamics and Metabolism, New Biological Entities, Pfizer, Andover, Massachusetts
| | - Jeffrey C Stevens
- Pharmacokinetics, Dynamics and Metabolism, New Biological Entities, Pfizer, Andover, Massachusetts
| | - Hendrik Neubert
- Pharmacokinetics, Dynamics and Metabolism, New Biological Entities, Pfizer, Andover, Massachusetts
| |
Collapse
|
11
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Hu S, Huang H, Ichihara G. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2015; 282:151-60. [PMID: 25448045 DOI: 10.1016/j.taap.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenlie Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shijie Hu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China
| | - Hanlin Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
12
|
Chen P, Sun Q, Huang Y, Atta MG, Turban S, Segev DL, Marr KA, Naqvi FF, Alachkar N, Kraus ES, Womer KL. Blood dendritic cell levels associated with impaired IL-12 production and T-cell deficiency in patients with kidney disease: implications for post-transplant viral infections. Transpl Int 2014; 27:1069-76. [PMID: 24963818 DOI: 10.1111/tri.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/03/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022]
Abstract
Reduced pretransplant blood myeloid dendritic cell (mDC) levels are associated with post-transplant BK viremia and cytomegalovirus (CMV) disease after kidney transplantation. To elucidate potential mechanisms by which mDC levels might influence these outcomes, we studied the association of mDC levels with mDC IL-12 production and T-cell level/function. Peripheral blood (PB) was studied in three groups: (i) end stage renal disease patients on hemodialysis (HD; n = 81); (ii) chronic kidney disease stage IV-V patients presenting for kidney transplant evaluation or the day of transplantation (Eval/Tx; n = 323); and (iii) healthy controls (HC; n = 22). Along with a statistically significant reduction in mDC levels, reduced CD8(+) T-cell levels were also demonstrated in the kidney disease groups compared with HC. Reduced PB mDC and monocyte-derived DC (MoDC) IL-12 production was observed after in vitro LPS stimulation in the HD versus HC groups. Finally, ELISpot assays demonstrated less robust CD3(+) INF-γ responses by MoDCs pulsed with CMV pp65 peptide from HD patients compared with HC. PB mDC level deficiency in patients with kidney disease is associated with deficient IL-12 production and T-cell level/function, which may explain the known correlation of CD8(+) T-cell lymphopenia with deficient post-transplant antiviral responses.
Collapse
Affiliation(s)
- Ping Chen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Immunologic monitoring in kidney transplant recipients. Kidney Res Clin Pract 2013; 32:52-61. [PMID: 26877913 PMCID: PMC4713911 DOI: 10.1016/j.krcp.2013.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/10/2013] [Indexed: 01/07/2023] Open
Abstract
Transplant biopsy has always been the gold standard for assessing the immune response to a kidney allograft (Chandraker A: Diagnostic techniques in the work-up of renal allograft dysfunction-an update. Curr Opin Nephrol Hypertens 8:723-728, 1999). A biopsy is not without risk and is unable to predict rejection and is only diagnostic once rejection has already occurred. However, in the past two decades, we have seen an expansion in assays that can potentially put an end to the "drug level" era, which until now has been one of the few tools available to clinicians for monitoring the immune response. A better understanding of the mechanisms of rejection and tolerance, and technological advances has led to the development of new noninvasive methods to monitor the immune response. In this article, we discuss these new methods and their potential uses in renal transplant recipients.
Collapse
|
14
|
Abstract
Flow cytometry is increasingly recognized as an invaluable technology in biomarker research. Owing to its multiparametric nature it can provide highly detailed information on any single cell in a heterogeneous population. Its versatility means it can be conducted in both the preclinical and clinical setting, generating biomarker data that can drive decisions pertaining to dose selection in clinical trials, treatment options for cancer sufferers and even suitability of patients to receive transplants. Most tissue types can be utilized by the flow cytometrist, allowing the technology to be applied to many fields of research, yet consensus still needs to be reached on standardization, regulation and validation of multiparametric flow cytometry assays. In parallel, continual innovation in analysis software to manage the huge datasets that can be generated is also needed. Nevertheless, the flexibility of flow cytometry means that it remains at the forefront of both routine and exploratory biomarker studies.
Collapse
|