1
|
Wu Y, Hu S, Mao Q, Shi D, Liu X, Liu B, Hua L, Hu G, Li C, Duan H, Tang B. The impact of three thioxothiazolidin compounds on trehalase activity and development of Spodoptera frugiperda larvae. PeerJ 2024; 12:e18233. [PMID: 39399419 PMCID: PMC11470766 DOI: 10.7717/peerj.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Trehalases (TREs), serving as crucial enzymes regulating trehalose and chitin metabolism in insects, represent prime targets for pest control strategies. We investigated the impact of three thioxothiazolidin compounds (1G, 2G, and 11G) on TRE activity and summarized their effects on the growth and development of Spodoptera frugiperda (Lepidoptera, Noctuidae). The experimental larvae of S. frugiperda were injected with the three thioxothiazolidin compounds (1G, 2G, and 11G), while the control group received an equivalent volume of 2% DMSO as a control. All three compounds had a strong effect on inhibiting TRE activity, significantly prolonging the pre-pupal development stage. However, compared with the 11G-treated group, the survival rate of larvae treated with 1G and 2G was significantly reduced by 31.11% and 27.78% respectively, while the occurrence of phenotypic abnormalities related to growth and development was higher. These results manifest that only the TRE inhibitors, 1G and 2G, modulate trehalose and chitin metabolism pathways of larvae, ultimately resulting in the failure molting and reduction of survival rates. Consequently, the thioxothiazolidin compounds, 1G and 2G, hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiangyu Liu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Tang B, Hu S, Luo Y, Shi D, Liu X, Zhong F, Jiang X, Hu G, Li C, Duan H, Wu Y. Impact of Three Thiazolidinone Compounds with Piperine Skeletons on Trehalase Activity and Development of Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8423-8433. [PMID: 38565327 DOI: 10.1021/acs.jafc.3c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| |
Collapse
|
3
|
Thanvi R, Jayasinghe TD, Kapil S, Obadawo BS, Ronning DR, Sucheck SJ. Synthesis of C7/C8-cyclitols and C7N-aminocyclitols from maltose and X-ray crystal structure of Streptomyces coelicolor GlgEI V279S in a complex with an amylostatin GXG–like derivative. Front Chem 2022; 10:950433. [PMID: 36157042 PMCID: PMC9501709 DOI: 10.3389/fchem.2022.950433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
C7/C8-cyclitols and C7N-aminocyclitols find applications in the pharmaceutical sector as α-glucosidase inhibitors and in the agricultural sector as fungicides and insecticides. In this study, we identified C7/C8-cyclitols and C7N-aminocyclitols as potential inhibitors of Streptomyces coelicolor (Sco) GlgEI-V279S based on the docking scores. The protein and the ligand (targets 11, 12, and 13) were prepared, the states were generated at pH 7.0 ± 2.0, and the ligands were docked into the active sites of the receptor via Glide™. The synthetic route to these targets was similar to our previously reported route used to obtain 4-⍺-glucoside of valienamine (AGV), except the protecting group for target 12 was a p-bromobenzyl (PBB) ether to preserve the alkene upon deprotection. While compounds 11–13 did not inhibit Sco GlgEI-V279S at the concentrations evaluated, an X-ray crystal structure of the Sco GlgE1-V279S/13 complex was solved to a resolution of 2.73 Å. This structure allowed assessment differences and commonality with our previously reported inhibitors and was useful for identifying enzyme–compound interactions that may be important for future inhibitor development. The Asp 394 nucleophile formed a bidentate hydrogen bond interaction with the exocyclic oxygen atoms (C(3)-OH and C(7)-OH) similar to the observed interactions with the Sco GlgEI-V279S in a complex with AGV (PDB:7MGY). In addition, the data suggest replacing the cyclohexyl group with more isosteric and hydrogen bond–donating groups to increase binding interactions in the + 1 binding site.
Collapse
Affiliation(s)
- Radhika Thanvi
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
| | - Thilina D. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sunayana Kapil
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
| | | | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Donald R. Ronning, ; Steven J. Sucheck,
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
- *Correspondence: Donald R. Ronning, ; Steven J. Sucheck,
| |
Collapse
|
4
|
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 2021; 12:329-345. [PMID: 33356857 PMCID: PMC7808424 DOI: 10.1080/21505594.2020.1868825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen and is frequently present in the human microbiome. It has a high relative resistance to environmental stresses and several antifungal drugs. An important component involved in microbial stress tolerance is trehalose. In this work, we characterized the three C. glabrata trehalase enzymes Ath1, Nth1 and Nth2. Single, double and triple deletion strains were constructed and characterized both in vitro and in vivo to determine the role of these enzymes in virulence. Ath1 was found to be located in the periplasm and was essential for growth on trehalose as sole carbon source, while Nth1 on the other hand was important for oxidative stress resistance, an observation which was consistent by the lower survival rate of the NTH1 deletion strain in human macrophages. No significant phenotype was observed for Nth2. The triple deletion strain was unable to establish a stable colonization of the gastrointestinal (GI) tract in mice indicating the importance of having trehalase activity for colonization in the gut.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Bea Timmermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Giel Vanreppelen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, VIB, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Yuke Cen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
5
|
Abdullah RS, El Nemr A, El‐Sakka SSA, Soliman MH, El‐Hashash MA, Ragab S. Facile and Efficient Nitration of 4‐Aryl‐1( 2H)‐Phthalazinone Derivatives Using Different Catalysts. ChemistrySelect 2021; 6:11231-11236. [DOI: 10.1002/slct.202102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2025]
Abstract
AbstractDifferent nitration methods were investigated on 4‐(4‐mthoxy‐3‐methyl phenyl)‐1(2H)‐phthalazinone and its derivatives using HNO3 as a nitrating agent with different catalysts. LC–MS/MS has been used to determine the product‘s structure. The results showed that the most suitable catalyst was P2O5 at room temperature to introduce an ortho mono‐nitrated group for the phthalazinone derivatives bearing donating groups on the phenyl ring. In contrast, 4‐halophenyl phthalazinone derivatives gave a high yield of mono‐nitrated products using H2SO4 as a catalyst. All mono‐nitrated products were separated with good to excellent yields, and their structures were confirmed by FT‐IR, NMR, LC‐MS/MS and elemental analyses.
Collapse
Affiliation(s)
- Rokaia Safwat Abdullah
- Environment Division National Institute of Oceanography and Fisheries (NIOF) Kayet Bey El-Anfoushy Alexandria Egypt
| | - Ahmed El Nemr
- Environment Division National Institute of Oceanography and Fisheries (NIOF) Kayet Bey El-Anfoushy Alexandria Egypt
| | | | | | | | - Safaa Ragab
- Environment Division National Institute of Oceanography and Fisheries (NIOF) Kayet Bey El-Anfoushy Alexandria Egypt
| |
Collapse
|
6
|
García MD, Argüelles JC. Trehalase inhibition by validamycin A may be a promising target to design new fungicides and insecticides. PEST MANAGEMENT SCIENCE 2021; 77:3832-3835. [PMID: 33786994 DOI: 10.1002/ps.6382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The introduction of insecticides and fungicides in agriculture has improved crop yields and, consequently, the quality of life for many people, especially in what is widely considered as the 'first world'. However, the indiscriminate use of dangerous chemical insecticides has led to pest resistance, human and animal poisoning and environmental pollution. Biochemical and genetic evidence concludes that the non-reducing disaccharide trehalose plays an essential role in the pathobiology of many insects and fungi. Both organisms share identical pathway for trehalose biosynthesis (the TPS/TPP pathway), while a high degree of homology in their trehalose hydrolysis capacity (trehalase activities) has also been demonstrated. In the search for new, effective and environmentally sustainable compounds, a set of trehalase inhibitors has emerged as a potentially interesting antifungal and insecticidal target. In particular, the trehalose analogue, Validamycin A, which has a strong inhibitory effect on several trehalases, has been successfully introduced for the treatment of various diseases caused by insects and fungi. Herein, we review the main features of the specific interaction between Validamycin A and trehalase as well as the expected advantages of the applications based on trehalase inhibition as insecticides and fungicides. © 2021 Society of Chemical Industry.
Collapse
|
7
|
Bian C, Duan Y, Xiu Q, Wang J, Tao X, Zhou M. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2021; 22:769-785. [PMID: 33934484 PMCID: PMC8232029 DOI: 10.1111/mpp.13060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 04/14/2023]
Abstract
Deoxynivalenol (DON) is a vital virulence factor of Fusarium graminearum, which causes Fusarium head blight (FHB). We recently found that validamycin A (VMA), an aminoglycoside antibiotic, can be used to control FHB and inhibit DON contamination, but its molecular mechanism is still unclear. In this study, we found that both neutral and acid trehalase (FgNTH and FgATH) are the targets of VMA in F. graminearum, and the deficiency of FgNTH and FgATH reduces the sensitivity to VMA by 2.12- and 1.79-fold, respectively, indicating that FgNTH is the main target of VMA. We found FgNTH is responsible for vegetative growth, FgATH is critical to sexual reproduction, and both of them play an important role in conidiation and virulence in F. graminearum. We found that FgNTH resided in the cytoplasm, affected the localization of FgATH, and positively regulated DON biosynthesis; however, FgATH resided in vacuole and negatively regulated DON biosynthesis. FgNTH interacted with FgPK (pyruvate kinase), a key enzyme in glycolysis, and the interaction was reduced by VMA; the deficiency of FgNTH affected the localization of FgPK under DON induction condition. Strains with a deficiency of FgNTH were more sensitive to demethylation inhibitor (DMI) fungicides. FgNTH regulated the expression level of FgCYP51A and FgCYP51B by interacting with FgCYP51B. Taken together, VMA inhibits DON biosynthesis by targeting FgNTH and reducing the interaction between FgNTH and FgPK, and synergizes with DMI fungicides against F. graminearum by decreasing FgCYP51A and FgCYP51B expression.
Collapse
Affiliation(s)
- Chuanhong Bian
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yabing Duan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qian Xiu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jueyu Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xian Tao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
8
|
|
9
|
Matassini C, Parmeggiani C, Cardona F. New Frontiers on Human Safe Insecticides and Fungicides: An Opinion on Trehalase Inhibitors. Molecules 2020; 25:E3013. [PMID: 32630325 PMCID: PMC7411730 DOI: 10.3390/molecules25133013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
In the era of green economy, trehalase inhibitors represent a valuable chance to develop non-toxic pesticides, being hydrophilic compounds that do not persist in the environment. The lesson on this topic that we learned from the past can be of great help in the research on new specific green pesticides. This review aims to describe the efforts made in the last 50 years in the evaluation of natural compounds and their analogues as trehalase inhibitors, in view of their potential use as insecticides and fungicides. Specifically, we analyzed trehalase inhibitors based on sugars and sugar mimics, focusing on those showing good inhibition properties towards insect trehalases. Despite their attractiveness as a target, up to now there are no trehalase inhibitors that have been developed as commercial insecticides. Although natural complex pseudo di- and trisaccharides were firstly studied to this aim, iminosugars look to be more promising, showing an excellent specificity profile towards insect trehalases. The results reported here represent an overview and a discussion of the best candidates which may lead to the development of an effective insecticide in the future.
Collapse
Affiliation(s)
- Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
| | - Camilla Parmeggiani
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-linear Spectroscopy via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
10
|
Bini D, Cardona F, Forcella M, Parmeggiani C, Parenti P, Nicotra F, Cipolla L. Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors. Beilstein J Org Chem 2012; 8:514-21. [PMID: 22509223 PMCID: PMC3326631 DOI: 10.3762/bjoc.8.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/06/2012] [Indexed: 12/21/2022] Open
Abstract
A small set of nojirimycin- and pyrrolidine-based iminosugar derivatives has been synthesized and evaluated as potential inhibitors of porcine and insect trehalases. Compounds 12, 13 and 20 proved to be active against both insect and porcine trehalases with selectivity towards the insect glycosidase, while compounds 10, 14 and 16 behaved as inhibitors only of insect trehalase. Despite the fact that the activity was found in the micromolar range, these findings may help in elucidating the structural features of this class of enzymes of different origin, which are still scarcely characterised.
Collapse
Affiliation(s)
- Davide Bini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Aguilar-Moncayo M, Díaz-Pérez P, García Fernández JM, Ortiz Mellet C, García-Moreno MI. Synthesis and glycosidase inhibitory activity of isourea-type bicyclic sp2-iminosugars related to galactonojirimycin and allonojirimycin. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|