1
|
PaOctβ2R: Identification and Functional Characterization of an Octopamine Receptor Activating Adenylyl Cyclase Activity in the American Cockroach Periplaneta americana. Int J Mol Sci 2022; 23:ijms23031677. [PMID: 35163598 PMCID: PMC8835733 DOI: 10.3390/ijms23031677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Biogenic amines constitute an important group of neuroactive substances that control and modulate various neural circuits. These small organic compounds engage members of the guanine nucleotide-binding protein coupled receptor (GPCR) superfamily to evoke specific cellular responses. In addition to dopamine- and 5-hydroxytryptamine (serotonin) receptors, arthropods express receptors that are activated exclusively by tyramine and octopamine. These phenolamines functionally substitute the noradrenergic system of vertebrates Octopamine receptors that are the focus of this study are classified as either α- or β-adrenergic-like. Knowledge on these receptors is scarce for the American cockroach (Periplaneta americana). So far, only an α–adrenergic-like octopamine receptor that primarily causes Ca2+ release from intracellular stores has been studied from the cockroach (PaOctα1R). Here we succeeded in cloning a gene from cockroach brain tissue that encodes a β-adrenergic-like receptor and leads to cAMP production upon activation. Notably, the receptor is 100-fold more selective for octopamine than for tyramine. A series of synthetic antagonists selectively block receptor activity with epinastine being the most potent. Bioinformatics allowed us to identify a total of 19 receptor sequences that build the framework of the biogenic amine receptor clade in the American cockroach. Phylogenetic analyses using these sequences and receptor sequences from model organisms showed that the newly cloned gene is an β2-adrenergic-like octopamine receptor. The functional characterization of PaOctβ2R and the bioinformatics data uncovered that the monoaminergic receptor family in the hemimetabolic P. americana is similarly complex as in holometabolic model insects like Drosophila melanogaster and the honeybee, Apis mellifera. Thus, investigating these receptors in detail may contribute to a better understanding of monoaminergic signaling in insect behavior and physiology.
Collapse
|
2
|
Blenau W, Wilms JA, Balfanz S, Baumann A. AmOctα2R: Functional Characterization of a Honeybee Octopamine Receptor Inhibiting Adenylyl Cyclase Activity. Int J Mol Sci 2020; 21:E9334. [PMID: 33302363 PMCID: PMC7762591 DOI: 10.3390/ijms21249334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
The catecholamines norepinephrine and epinephrine are important regulators of vertebrate physiology. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they use the phenolamines tyramine and octopamine for similar physiological functions. These biogenic amines activate specific members of the large protein family of G protein-coupled receptors (GPCRs). Based on molecular and pharmacological data, insect octopamine receptors were classified as either α- or β-adrenergic-like octopamine receptors. Currently, one α- and four β-receptors have been molecularly and pharmacologically characterized in the honeybee. Recently, an α2-adrenergic-like octopamine receptor was identified in Drosophila melanogaster (DmOctα2R). This receptor is activated by octopamine and other biogenic amines and causes a decrease in intracellular cAMP ([cAMP]i). Here, we show that the orthologous receptor of the honeybee (AmOctα2R), phylogenetically groups in a clade closely related to human α2-adrenergic receptors. When heterologously expressed in an eukaryotic cell line, AmOctα2R causes a decrease in [cAMP]i. The receptor displays a pronounced preference for octopamine over tyramine. In contrast to DmOctα2R, the honeybee receptor is not activated by serotonin. Its activity can be blocked efficiently by 5-carboxamidotryptamine and phentolamine. The functional characterization of AmOctα2R now adds a sixth member to this subfamily of monoaminergic receptors in the honeybee and is an important step towards understanding the actions of octopamine in honeybee behavior and physiology.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany;
| | - Joana Alessandra Wilms
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (J.A.W.); (S.B.)
| | - Sabine Balfanz
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (J.A.W.); (S.B.)
| | - Arnd Baumann
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (J.A.W.); (S.B.)
| |
Collapse
|
3
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Marton Z, Guillon R, Krimm I, Preeti, Rahimova R, Egron D, Jordheim LP, Aghajari N, Dumontet C, Périgaud C, Lionne C, Peyrottes S, Chaloin L. Identification of Noncompetitive Inhibitors of Cytosolic 5'-Nucleotidase II Using a Fragment-Based Approach. J Med Chem 2015; 58:9680-96. [PMID: 26599519 DOI: 10.1021/acs.jmedchem.5b01616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used a combined approach based on fragment-based drug design (FBDD) and in silico methods to design potential inhibitors of the cytosolic 5'-nucleotidase II (cN-II), which has been recognized as an important therapeutic target in hematological cancers. Two subgroups of small compounds (including adenine and biaryl moieties) were identified as cN-II binders and a fragment growing strategy guided by molecular docking was considered. Five compounds induced a strong inhibition of the 5'-nucleotidase activity in vitro, and the most potent ones were characterized as noncompetitive inhibitors. Biological evaluation in cancer cell lines showed synergic effect with selected anticancer drugs. Structural studies using X-ray crystallography lead to the identification of new binding sites for two derivatives and of a new crystal form showing important domain swapping. Altogether, the strategy developed herein allowed identifying new original noncompetitive inhibitors against cN-II that act in a synergistic manner with well-known antitumoral agents.
Collapse
Affiliation(s)
- Zsuzsanna Marton
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Rémi Guillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Isabelle Krimm
- Institut des Sciences Analytiques, UMR 5280 CNRS, Université Lyon 1 , ENS de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Preeti
- Institut de Biologie et Chimie des Protéines FR3302, Molecular and Structural Bases of Infectious Diseases UMR 5086 CNRS, Université Lyon 1 , 7 Passage du Vercors, 69367 Lyon, France
| | - Rahila Rahimova
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - David Egron
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lars P Jordheim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1 , 69008 Lyon, France
| | - Nushin Aghajari
- Institut de Biologie et Chimie des Protéines FR3302, Molecular and Structural Bases of Infectious Diseases UMR 5086 CNRS, Université Lyon 1 , 7 Passage du Vercors, 69367 Lyon, France
| | - Charles Dumontet
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1 , 69008 Lyon, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| |
Collapse
|
5
|
Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Trends Mol Med 2015; 21:687-701. [DOI: 10.1016/j.molmed.2015.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/07/2023]
|
6
|
Hirozane Y, Motoyaji T, Maru T, Okada K, Tarui N. Generating thermostabilized agonist-bound GPR40/FFAR1 using virus-like particles and a label-free binding assay. Mol Membr Biol 2015; 31:168-75. [PMID: 25068810 DOI: 10.3109/09687688.2014.923588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Elucidating the detailed mechanism of activation of membrane protein receptors and their ligand binding is essential for structure-based drug design. Membrane protein crystal structure analysis successfully aids in understanding these fundamental molecular interactions. However, protein crystal structure analysis of the G-protein-coupled receptor (GPCR) remains challenging, even for the class of GPCRs which have been included in the majority of structure analysis reports among membrane proteins, due to the substantial instability of these receptors when extracted from lipid bilayer membranes. It is known that increased thermostability tends to decrease conformational flexibility, which contributes to the generation of diffraction quality crystals. However, this is still not straightforward, and significant effort is required to identify thermostabilized mutants that are optimal for crystallography. To address this issue, a versatile screening platform based on a label-free ligand binding assay combined with transient overexpression in virus-like particles was developed. This platform was used to generate thermostabilized GPR40 [also known as free fatty acid receptor 1 (FFAR1)] for fasiglifam (TAK-875). This demonstrated that the thermostabilized mutant GPR40 (L42A/F88A/G103A/Y202F) was successfully used for crystal structure analysis.
Collapse
Affiliation(s)
- Yoshihiko Hirozane
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd , Fujisawa, Kanagawa , Japan
| | | | | | | | | |
Collapse
|
7
|
Bortolato A, Doré AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH. Structure of Class B GPCRs: new horizons for drug discovery. Br J Pharmacol 2015; 171:3132-45. [PMID: 24628305 DOI: 10.1111/bph.12689] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/15/2023] Open
Abstract
Class B GPCRs of the secretin family are important drug targets in many human diseases including diabetes, neurodegeneration, cardiovascular disease and psychiatric disorders. X-ray crystal structures for the glucagon receptor and corticotropin-releasing factor receptor 1 have now been published. In this review, we analyse the new structures and how they compare with each other and with Class A and F receptors. We also consider the differences in druggability and possible similarity in the activation mechanisms. Finally, we discuss the potential for the design of small-molecule modulators for these important targets in drug discovery. This new structural insight allows, for the first time, structure-based drug design methods to be applied to Class B GPCRs.
Collapse
Affiliation(s)
- Andrea Bortolato
- Heptares Therapeutics Limited, Welwyn Garden City, Hertfordshire, UK
| | | | | | | | | | | |
Collapse
|
8
|
Cavasotto CN, Palomba D. Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models. Chem Commun (Camb) 2015; 51:13576-94. [DOI: 10.1039/c5cc05050b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We show the key role of structural homology models in GPCR structure-based lead discovery and optimization, highlighting methodological aspects, recent progress and future directions.
Collapse
Affiliation(s)
- Claudio N. Cavasotto
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society
- Buenos Aires
- Argentina
| | - Damián Palomba
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society
- Buenos Aires
- Argentina
| |
Collapse
|
9
|
Tautermann CS, Seeliger D, Kriegl JM. What can we learn from molecular dynamics simulations for GPCR drug design? Comput Struct Biotechnol J 2014; 13:111-21. [PMID: 25709761 PMCID: PMC4334948 DOI: 10.1016/j.csbj.2014.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023] Open
Abstract
Recent years have seen a tremendous progress in the elucidation of experimental structural information for G-protein coupled receptors (GPCRs). Although for the vast majority of pharmaceutically relevant GPCRs structural information is still accessible only by homology models the steadily increasing amount of structural information fosters the application of structure-based drug design tools for this important class of drug targets. In this article we focus on the application of molecular dynamics (MD) simulations in GPCR drug discovery programs. Typical application scenarios of MD simulations and their scope and limitations will be described on the basis of two selected case studies, namely the binding of small molecule antagonists to the human CC chemokine receptor 3 (CCR3) and a detailed investigation of the interplay between receptor dynamics and solvation for the binding of small molecules to the human muscarinic acetylcholine receptor 3 (hM3R).
Collapse
Affiliation(s)
| | | | - Jan M. Kriegl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Lead Identification and Optimization Support, Birkendorfer Str. 65, D-88397 Biberach a.d. Riss, Germany
| |
Collapse
|
10
|
Hudson BD, Shimpukade B, Milligan G, Ulven T. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 2014; 289:20345-58. [PMID: 24860101 PMCID: PMC4106347 DOI: 10.1074/jbc.m114.561449] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fatty acid and synthetic agonists to FFA4 have been identified. This has allowed for the refinement of a well validated model of the mode of ligand-FFA4 interaction that will be invaluable in the identification of novel ligands and the future development of this receptor as a therapeutic target. The model reliably predicted the effects of substituent variations on agonist potency, and it was also able to predict the qualitative effect of binding site mutations in the majority of cases.
Collapse
Affiliation(s)
- Brian D Hudson
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Bharat Shimpukade
- the Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Trond Ulven
- the Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
11
|
Sensi C, Simonelli S, Zanotti I, Tedeschi G, Lusardi G, Franceschini G, Calabresi L, Eberini I. Distant homology modeling of LCAT and its validation through in silico targeting and in vitro and in vivo assays. PLoS One 2014; 9:e95044. [PMID: 24736652 PMCID: PMC3988154 DOI: 10.1371/journal.pone.0095044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
LCAT (lecithin:cholesterol acyltransferase) catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late ‘90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallographic structures. LCAT shows the typical folding of the α/β hydrolase superfamily, and its topology is characterized by a combination of α-helices covering a central 7-strand β-sheet. LCAT presents a Ser/Asp/His catalytic triad with a peculiar geometry, which is shared with such other enzyme classes as lipases, proteases and esterases. Our proposed model was validated through different approaches. We evaluated the impact on LCAT structure of some point mutations close to the enzyme active site (Lys218Asn, Thr274Ala, Thr274Ile) and explained, at a molecular level, their phenotypic effects. Furthermore, we devised some LCAT modulators either designed through a de novo strategy or identified through a virtual high-throughput screening pipeline. The tested compounds were proven to be potent inhibitors of the enzyme activity.
Collapse
Affiliation(s)
- Cristina Sensi
- Laboratorio di Biochimica e Biofisica Computazionale, Università degli Studi di Milano, Milano, Italia
| | - Sara Simonelli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Ilaria Zanotti
- Dipartimento di Farmacia, Università Degli Studi di Parma, Parma, Italia
| | - Gabriella Tedeschi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italia
| | - Giulia Lusardi
- Dipartimento di Farmacia, Università Degli Studi di Parma, Parma, Italia
| | - Guido Franceschini
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Ivano Eberini
- Laboratorio di Biochimica e Biofisica Computazionale, Università degli Studi di Milano, Milano, Italia
- * E-mail:
| |
Collapse
|
12
|
Chung HJ, Kim JD, Kim KH, Jeong NY. G protein-coupled receptor, family C, group 5 (GPRC5B) downregulation in spinal cord neurons is involved in neuropathic pain. Korean J Anesthesiol 2014; 66:230-6. [PMID: 24729846 PMCID: PMC3983420 DOI: 10.4097/kjae.2014.66.3.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023] Open
Abstract
Background G protein-coupled receptor, family C, group 5 (GPRC5B), a retinoic acid-inducible orphan G-protein-coupled receptor (GPCR), is a member of the group C metabotropic glutamate receptor family proteins presumably related in non-canonical Wnt signaling. In this study, we investigated altered GPRC5B expression in the dorsal horn of the spinal cord after spinal nerve injury and its involvement in the development of neuropathic pain. Methods After induction of anesthesia by intraperitoneal injection of pentobarbital (35 mg /kg), the left L5 spinal nerve at the level of 2 mm distal to the L5 DRG was tightly ligated with silk and cut just distal to the ligature. Seven days after nerve injury, animals were perfused with 4% paraformaldehyde, and the spinal cords were extracted and post-fixed at 4℃ overnight. To identify the expression of GPRC5B and analyze the involvement of GPRC5B in neuropathic pain, immunofluorescence was performed using several markers for neurons and glial cells in spinal cord tissue. Results After L5 spinal nerve ligation (SNL), the expression of GPRC5B was decreased in the ipsilateral part, as compared to the contralateral part, of the spinal dorsal horn. SNL induced the downregulation of GPRC5B in NeuN-positive neurons in the spinal dorsal horn. However, CNPase-positive oligodendrocytes, OX42-positive microglia, and GFAP-positive astrocytes were not immunolabeled with GPRC5B antibody in the spinal dorsal horn. Conclusions These results imply that L5 SNL-induced GPRC5B downregulation may affect microglial activation in the spinal dorsal horn and be involved in neuropathic pain.
Collapse
Affiliation(s)
- Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Kyung Han Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
13
|
Luttrell LM. Minireview: More than just a hammer: ligand "bias" and pharmaceutical discovery. Mol Endocrinol 2014; 28:281-94. [PMID: 24433041 DOI: 10.1210/me.2013-1314] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Conventional orthosteric drug development programs targeting G protein-coupled receptors (GPCRs) have focused on the concepts of agonism and antagonism, in which receptor structure determines the nature of the downstream signal and ligand efficacy determines its intensity. Over the past decade, the emerging paradigms of "pluridimensional efficacy" and "functional selectivity" have revealed that GPCR signaling is not monolithic, and that ligand structure can "bias" signal output by stabilizing active receptor states in different proportions than the native ligand. Biased ligands are novel pharmacologic entities that possess the unique ability to qualitatively change GPCR signaling, in effect creating "new receptors" with distinct efficacy profiles driven by ligand structure. The promise of biased agonism lies in this ability to engender "mixed" effects not attainable using conventional agonists or antagonists, promoting therapeutically beneficial signals while antagonizing deleterious ones. Indeed, arrestin pathway-selective agonists for the type 1 parathyroid hormone and angiotensin AT1 receptors, and G protein pathway-selective agonists for the GPR109A nicotinic acid and μ-opioid receptors, have demonstrated unique, and potentially therapeutic, efficacy in cell-based assays and preclinical animal models. Conversely, activating GPCRs in "unnatural" ways may lead to downstream biological consequences that cannot be predicted from prior knowledge of the actions of the native ligand, especially in the case of ligands that selectively activate as-yet poorly characterized G protein-independent signaling networks mediated via arrestins. Although much needs to be done to realize the clinical potential of functional selectivity, biased GPCR ligands nonetheless appear to be important new additions to the pharmacologic toolbox.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
14
|
Chemokine receptor modeling: an interdisciplinary approach to drug design. Future Med Chem 2014; 6:91-114. [DOI: 10.4155/fmc.13.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemokines and their receptors are integral components of the immune response, regulating lymphocyte development, homing and trafficking, and playing a key role in the pathophysiology of many diseases. Chemokine receptors have, therefore, become the target for both small-molecule, peptide and antibody therapeutics. Chemokine receptors belong to the family of seven transmembrane receptor class A G protein-coupled receptors. The publication of the crystal structure of the archetypal class A seven transmembrane receptor protein rhodopsin, and other G protein-coupled receptors, including C-X-C chemokine receptor 4 and C-C chemokine receptor 5, provided the opportunity to create homology models of chemokine receptors. In this review, we describe an interdisciplinary approach to chemokine receptor modeling and the utility of this approach for structure-based drug design of chemokine receptor inhibitors.
Collapse
|
15
|
GPCR & Company: Databases and Servers for GPCRs and Interacting Partners. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:185-204. [DOI: 10.1007/978-94-007-7423-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
16
|
Andrews SP, Brown GA, Christopher JA. Structure-Based and Fragment-Based GPCR Drug Discovery. ChemMedChem 2013; 9:256-75. [DOI: 10.1002/cmdc.201300382] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/15/2013] [Indexed: 01/05/2023]
|
17
|
Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC. Insights into the structure of class B GPCRs. Trends Pharmacol Sci 2013; 35:12-22. [PMID: 24359917 DOI: 10.1016/j.tips.2013.11.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/08/2023]
Abstract
The secretin-like (class B) family of G protein-coupled receptors (GPCRs) are key players in hormonal homeostasis and are interesting drug targets for the treatment of several metabolic disorders (such as type 2 diabetes, osteoporosis, and obesity) and nervous system diseases (such as migraine, anxiety, and depression). The recently solved crystal structures of the transmembrane domains of the human glucagon receptor and human corticotropin-releasing factor receptor 1 have opened up new opportunities to study the structure and function of class B GPCRs. The current review shows how these structures offer more detailed explanations to previous biochemical and pharmacological studies of class B GPCRs, and provides new insights into their interactions with ligands.
Collapse
Affiliation(s)
- Kaspar Hollenstein
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, UK
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Andrea Bortolato
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, UK
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 189 Guo Shou Jing Road, Shanghai, 201203, China
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, UK.
| | - Raymond C Stevens
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, Jazayeri A, Cooke RM, Weir M, Marshall FH. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 2013; 499:438-43. [PMID: 23863939 DOI: 10.1038/nature12357] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022]
Abstract
Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.
Collapse
Affiliation(s)
- Kaspar Hollenstein
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Scott DJ, Kummer L, Tremmel D, Plückthun A. Stabilizing membrane proteins through protein engineering. Curr Opin Chem Biol 2013; 17:427-35. [PMID: 23639904 DOI: 10.1016/j.cbpa.2013.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/18/2022]
Abstract
Integral membrane proteins (IMPs) are crucial components of all cells but are difficult to study in vitro because they are generally unstable when removed from their native membranes using detergents. Despite the major biomedical relevance of IMPs, less than 1% of Protein Data Bank (PDB) entries are IMP structures, reflecting the technical gap between studies of soluble proteins compared to IMPs. Stability can be engineered into IMPs by inserting stabilizing mutations, thereby generating proteins that can be successfully applied to biochemical and structural studies when solubilized in detergent micelles. The identification of stabilizing mutations is not trivial, and this review will focus on the methods that have been used to identify stabilized membrane proteins, including alanine scanning and screening, directed evolution and computational design.
Collapse
Affiliation(s)
- Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
20
|
Heifetz A, Barker O, Verquin G, Wimmer N, Meutermans W, Pal S, Law RJ, Whittaker M. Fighting obesity with a sugar-based library: discovery of novel MCH-1R antagonists by a new computational-VAST approach for exploration of GPCR binding sites. J Chem Inf Model 2013; 53:1084-99. [PMID: 23590178 DOI: 10.1021/ci4000882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Obesity is an increasingly common disease. While antagonism of the melanin-concentrating hormone-1 receptor (MCH-1R) has been widely reported as a promising therapeutic avenue for obesity treatment, no MCH-1R antagonists have reached the market. Discovery and optimization of new chemical matter targeting MCH-1R is hindered by reduced HTS success rates and a lack of structural information about the MCH-1R binding site. X-ray crystallography and NMR, the major experimental sources of structural information, are very slow processes for membrane proteins and are not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of these methods to impact the drug discovery process for GPCR targets in "real-time", and hence, there is an urgent need for other practical and cost-efficient alternatives. We present here a conceptually pioneering approach that integrates GPCR modeling with design, synthesis, and screening of a diverse library of sugar-based compounds from the VAST technology (versatile assembly on stable templates) to provide structural insights on the MCH-1R binding site. This approach creates a cost-efficient new avenue for structure-based drug discovery (SBDD) against GPCR targets. In our work, a primary VAST hit was used to construct a high-quality MCH-1R model. Following model validation, a structure-based virtual screen yielded a 14% hit rate and 10 novel chemotypes of potent MCH-1R antagonists, including EOAI3367472 (IC50 = 131 nM) and EOAI3367474 (IC50 = 213 nM).
Collapse
Affiliation(s)
- Alexander Heifetz
- Evotec (UK), Ltd., Milton Park, Abingdon, Oxfordshire, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Seibt BF, Schiedel AC, Thimm D, Hinz S, Sherbiny FF, Müller CE. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochem Pharmacol 2013; 85:1317-29. [PMID: 23500543 DOI: 10.1016/j.bcp.2013.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/19/2023]
Abstract
The second extracellular loop (EL2) of G protein-coupled receptors (GPCRs), which represent important drug targets, may be involved in ligand recognition and receptor activation. We studied the closely related adenosine receptor (AR) subtypes A2A and A2B by exchanging the complete EL2 of the human A2BAR for the EL2 of the A2AAR. Furthermore, single amino acid residues (Asp148(45.27), Ser149(45.28), Thr151(45.30), Glu164(45.43), Ser165(45.44), and Val169(45.48)) in the EL2 of the A2BAR were exchanged for alanine. The single mutations did not lead to any major effects, except for the T151A mutant, at which NECA showed considerably increased efficacy. The loop exchange entailed significant effects: The A2A-selective agonist CGS21680, while being completely inactive at A2BARs, showed high affinity for the mutant A2B(EL2-A2A)AR, and was able to fully activate the receptor. Most strikingly, all agonists investigated (adenosine, NECA, BAY60-6583, CGS21680) showed strongly increased efficacies at the mutant A2B(EL2-A2A) as compared to the wt AR. Thus, the EL2 of the A2BAR appears to have multiple functions: besides its involvement in ligand binding and subtype selectivity it modulates agonist-bound receptor conformations thereby controlling signalling efficacy. This role of the EL2 is likely to extend to other members of the GPCR family, and the EL2 of GPCRs appears to be an attractive target structure for drugs.
Collapse
Affiliation(s)
- Benjamin F Seibt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Neetoo-Isseljee Z, MacKenzie AE, Southern C, Jerman J, McIver EG, Harries N, Taylor DL, Milligan G. High-throughput identification and characterization of novel, species-selective GPR35 agonists. J Pharmacol Exp Ther 2013; 344:568-78. [PMID: 23262279 PMCID: PMC3583504 DOI: 10.1124/jpet.112.201798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/20/2012] [Indexed: 12/26/2022] Open
Abstract
Drugs targeting the orphan receptor GPR35 have potential therapeutic application in a number of disease areas, including inflammation, metabolic disorders, nociception, and cardiovascular disease. Currently available surrogate GPR35 agonists identified from pharmacologically relevant compound libraries have limited utility due to the likelihood of off-target effects in vitro and in vivo and the variable potency that such ligands exhibit across species. We sought to identify and characterize novel GPR35 agonists to facilitate studies aimed at defining the physiologic role of GPR35. PathHunter β-arrestin recruitment technology was validated as a human GPR35 screening assay, and a high-throughput screen of 100,000 diverse low molecular weight compounds was conducted. Confirmed GPR35 agonists from five distinct chemotypes were selected for detailed characterization using both β-arrestin recruitment and G protein-dependent assays and each of the human, mouse, and rat GPR35 orthologs. These studies identified 4-{(Z)-[(2Z)-2-(2-fluorobenzylidene)-4-oxo-1,3-thiazolidin-5-ylidene]methyl}benzoic acid (compound 1) as the highest potency full agonist of human GPR35 yet described. As with certain other GPR35 agonists, compound 1 was markedly selective for human GPR35, but displayed elements of signal bias between β-arrestin-2 and G protein-dependent assays. Compound 1 also displayed competitive behavior when assessed against the human GPR35 antagonist, ML-145 (2-hydroxy-4-[4-(5Z)-5-[(E)-2-methyl-3-phenylprop-2-enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino]benzoic acid). Of the other chemotypes studied, compounds 2 and 3 were selective for the human receptor, but compounds 4 and 5 demonstrated similar activity at human, rat, and mouse GPR35 orthologs. Further characterization of these compounds and related analogs is likely to facilitate a better understanding of GPR35 in health and disease.
Collapse
Affiliation(s)
- Zaynab Neetoo-Isseljee
- Medical Research Council Technology Centre for Therapeutics Discovery, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kołaczkowski M, Bucki A, Feder M, Pawłowski M. Ligand-optimized homology models of D₁ and D₂ dopamine receptors: application for virtual screening. J Chem Inf Model 2013; 53:638-48. [PMID: 23398329 DOI: 10.1021/ci300413h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent breakthroughs in crystallographic studies of G protein-coupled receptors (GPCRs), together with continuous progress in molecular modeling methods, have opened new perspectives for structure-based drug discovery. A crucial enhancement in this area was development of induced fit docking procedures that allow optimization of binding pocket conformation guided by the features of its active ligands. In the course of our research program aimed at discovery of novel antipsychotic agents, our attention focused on dopaminergic D2 and D1 receptors (D2R and D1R). Thus, we decided to investigate whether the availability of a novel structure of the closely related D3 receptor and application of induced fit docking procedures for binding pocket refinement would permit the building of models of D2R and D1R that facilitate a successful virtual screening (VS). Here, we provide an in-depth description of the modeling procedure and the discussion of the results of a VS benchmark we performed to compare efficiency of the ligand-optimized receptors in comparison with the regular homology models. We observed that application of the ligand-optimized models significantly improved the VS performance both in terms of BEDROC (0.325 vs 0.182 for D1R and 0.383 vs 0.301 for D2R) as well as EF1% (20 vs 11 for D1R and 18 vs 10 for D2R). In contrast, no improvement was observed for the performance of a D2R model built on the D3R template, when compared with that derived from the structure of the previously published and more evolutionary distant β2 adrenergic receptor. The comparison of results for receptors built according to various protocols and templates revealed that the most significant factor for the receptor performance was a proper selection of "tool ligand" used in induced fit docking procedure. Taken together, our results suggest that the described homology modeling procedure could be a viable tool for structure-based GPCR ligand design, even for the targets for which only a relatively distant structural template is available.
Collapse
Affiliation(s)
- Marcin Kołaczkowski
- Department of Pharmaceutical Chemistry, Jagiellonian University Collegium Medicum , 9 Medyczna Street, 30-688 Kraków, Poland
| | | | | | | |
Collapse
|
24
|
Aisenbrey C, Michalek M, Salnikov ES, Bechinger B. Solid-state NMR approaches to study protein structure and protein-lipid interactions. Methods Mol Biol 2013; 974:357-387. [PMID: 23404284 DOI: 10.1007/978-1-62703-275-9_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solid-state NMR spectroscopy has been developed for the investigation of membrane-associated polypeptides and remains one of the few techniques to reveal high-resolution structural information in liquid-disordered phospholipid bilayers. In particular, oriented samples have been used to investigate the structure, dynamics, and topology of membrane polypeptides. Much of the previous solid-state NMR work has been developed and performed on peptides, but the technique is constantly expanding towards larger membrane proteins. Here, a number of protocols are presented describing among other the reconstitution of membrane proteins into oriented membranes, monitoring membrane alignment by (31)P solid-state NMR spectroscopy; investigations of the protein by one- and two-dimensional (15)N solid-state NMR; and measurements of the lipid order parameters using (2)H solid-state NMR spectroscopy. Using such methods solid-state NMR spectroscopy has revealed a detailed picture of the ensemble of both lipids and proteins and their mutual interdependence in the bilayer environment.
Collapse
|
25
|
Design and Application of Synthetic Biology Devices for Therapy. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Andrews SP, Tehan B. Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20164j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first example of structure-based drug design with stabilised GPCRs has enabled the identification of a preclinical candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Benjamin Tehan
- Heptares Therapeutics Limited
- BioPark
- Welwyn Garden City
- UK
| |
Collapse
|
27
|
The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 2012; 12:25-34. [PMID: 23237917 DOI: 10.1038/nrd3859] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are targeted by ∼30-40% of marketed drugs, and their key roles in normal physiology and in disease demonstrate that an understanding of their structure and function is valuable to researchers in both basic science and drug discovery. However, until recently, detailed structural information on this protein family was limited by challenges in X-ray crystallographic analysis of such membrane proteins. The GPCR Network was created in 2010 with the goal of structurally characterizing 15-25 representative human GPCRs within 5 years, based on an active outreach programme addressing an interdisciplinary community of scientists interested in GPCR structure, chemistry and biology. Here, we provide an overview of how this collaborative effort has enabled the structural determination and characterization of eight human GPCRs so far, and discuss some of the challenges that remain in gaining more detailed insights into structure-function relationships in this receptor superfamily.
Collapse
|
28
|
Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem 2012; 287:41195-209. [PMID: 23066016 PMCID: PMC3510819 DOI: 10.1074/jbc.m112.396259] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs, it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [35S]GTPγS assay. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity in this assay, whereas the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the second extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity and in most cases also yielded corresponding changes in SCFA potency.
Collapse
Affiliation(s)
- Brian D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- James Pease
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London SW7 2AZ, U.K
| | | |
Collapse
|
30
|
Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, Adams DR, Ulven T, Milligan G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J 2012; 26:4951-65. [PMID: 22919070 PMCID: PMC3509056 DOI: 10.1096/fj.12-213314] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs.
Collapse
Affiliation(s)
- Brian D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Scott DE, Coyne AG, Hudson SA, Abell C. Fragment-Based Approaches in Drug Discovery and Chemical Biology. Biochemistry 2012; 51:4990-5003. [DOI: 10.1021/bi3005126] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Duncan E. Scott
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Anthony G. Coyne
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Sean A. Hudson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Chris Abell
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
32
|
Shoichet BK, Kobilka BK. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 2012; 33:268-72. [PMID: 22503476 DOI: 10.1016/j.tips.2012.03.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/16/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a large family of signaling proteins that includes many therapeutic targets; however, progress in identifying new small molecule drugs has been disappointing. The past 4 years have seen remarkable progress in the structural biology of GPCRs, raising the possibility of applying structure-based approaches to GPCR drug discovery efforts. Of the various structure-based approaches that have been applied to soluble protein targets, such as proteases and kinases, in silico docking is among the most ready applicable to GPCRs. Early studies suggest that GPCR binding pockets are well suited to docking, and docking screens have identified potent and novel compounds for these targets. This review will focus on the current state of in silico docking for GPCRs.
Collapse
Affiliation(s)
- Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | |
Collapse
|
33
|
Heifetz A, Morris GB, Biggin PC, Barker O, Fryatt T, Bentley J, Hallett D, Manikowski D, Pal S, Reifegerste R, Slack M, Law R. Study of Human Orexin-1 and -2 G-Protein-Coupled Receptors with Novel and Published Antagonists by Modeling, Molecular Dynamics Simulations, and Site-Directed Mutagenesis. Biochemistry 2012; 51:3178-97. [DOI: 10.1021/bi300136h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Heifetz
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - G. Benjamin Morris
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Oliver Barker
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Tara Fryatt
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Jonathan Bentley
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - David Hallett
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | | | - Sandeep Pal
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Rita Reifegerste
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Mark Slack
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Richard Law
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| |
Collapse
|