1
|
Birnbaum C, Wood J, Lilleskov E, Lamit LJ, Shannon J, Brewer M, Grover S. Degradation Reduces Microbial Richness and Alters Microbial Functions in an Australian Peatland. MICROBIAL ECOLOGY 2023; 85:875-891. [PMID: 35867139 PMCID: PMC10156627 DOI: 10.1007/s00248-022-02071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/01/2022] [Indexed: 05/04/2023]
Abstract
Peatland ecosystems cover only 3% of the world's land area; however, they store one-third of the global soil carbon (C). Microbial communities are the main drivers of C decomposition in peatlands, yet we have limited knowledge of their structure and function. While the microbial communities in the Northern Hemisphere peatlands are well documented, we have limited understanding of microbial community composition and function in the Southern Hemisphere peatlands, especially in Australia. We investigated the vertical stratification of prokaryote and fungal communities from Wellington Plains peatland in the Australian Alps. Within the peatland complex, bog peat was sampled from the intact peatland and dried peat from the degraded peatland along a vertical soil depth gradient (i.e., acrotelm, mesotelm, and catotelm). We analyzed the prokaryote and fungal community structure, predicted functional profiles of prokaryotes using PICRUSt, and assigned soil fungal guilds using FUNGuild. We found that the structure and function of prokaryotes were vertically stratified in the intact bog. Soil carbon, manganese, nitrogen, lead, and sodium content best explained the prokaryote composition. Prokaryote richness was significantly higher in the intact bog acrotelm compared to degraded bog acrotelm. Fungal composition remained similar across the soil depth gradient; however, there was a considerable increase in saprotroph abundance and decrease in endophyte abundance along the vertical soil depth gradient. The abundance of saprotrophs and plant pathogens was two-fold higher in the degraded bog acrotelm. Soil manganese and nitrogen content, electrical conductivity, and water table level (cm) best explained the fungal composition. Our results demonstrate that both fungal and prokaryote communities are shaped by soil abiotic factors and that peatland degradation reduces microbial richness and alters microbial functions. Thus, current and future changes to the environmental conditions in these peatlands may lead to altered microbial community structures and associated functions which may have implications for broader ecosystem function changes in peatlands.
Collapse
Affiliation(s)
- Christina Birnbaum
- Applied Chemistry and Environmental Science, School of Science, RMIT University Melbourne, Victoria, 3001, Australia.
- School of Life and Environmental Sciences, Faculty of Science & Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
- School of Agriculture and Environmental Science, The University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Jennifer Wood
- Physiology, Anatomy and Microbiology, La Trobe University, Science Drive, Bundoora, VIC, 3086, Australia
| | - Erik Lilleskov
- USDA Forest Service, Northern Research Station, 410 MacInnes Dr, Houghton, MI, 49931, USA
| | - Louis James Lamit
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - James Shannon
- Research Centre for Applied Alpine Ecology, Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Matthew Brewer
- Physiology, Anatomy and Microbiology, La Trobe University, Science Drive, Bundoora, VIC, 3086, Australia
| | - Samantha Grover
- Applied Chemistry and Environmental Science, School of Science, RMIT University Melbourne, Victoria, 3001, Australia
| |
Collapse
|
2
|
Stable Isotope Probing-RNA Strategy to Study Plant/Fungus Interactions. Methods Mol Biol 2022; 2605:169-186. [PMID: 36520394 DOI: 10.1007/978-1-0716-2871-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of stable-isotope probing (SIP) allows tracing specific labeled substrates into fungi leading to a better understanding of their role in biogeochemical cycles and their relationship with their environment. Stable isotope probing combined with ribosomal RNA molecule, conserved in the three kingdoms of life, and messenger RNA analysis permits the linkage of diversity and function. Here, we describe two methods designed to investigate the interactions between plants and their associated mycorrhizal compartment by tracing carbon flux from the host plant to its symbionts.
Collapse
|
3
|
Johnson ZJ, Krutkin DD, Bohutskyi P, Kalyuzhnaya MG. Metals and methylotrophy: Via global gene expression studies. Methods Enzymol 2021; 650:185-213. [PMID: 33867021 DOI: 10.1016/bs.mie.2021.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A number of minerals, such as copper, cobalt, and rare earth elements (REE), are essential modulators of microbial one-carbon metabolism. This chapter provides an overview of the gene expression study design and analysis protocols for uncovering REE-induced changes in methylotrophic bacteria. By interrogating relationships and differences in total gene expression induced by mineral micronutrients, a deeper understanding of gene regulation at a systems scale can be gained. With careful design and execution of RNA-sequencing experiments, thorough processing and assessment of read quality can be utilized to assess and adjust for possible biases. By ensuring only quality data are utilized in downstream processes, differential gene expression, overrepresented analyses, and gene-set enrichment analyses provide reliable and reproducible representation of pathways and functions which are being affected by changes in environmental conditions.
Collapse
Affiliation(s)
- Zachary J Johnson
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Dennis D Krutkin
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Pavlo Bohutskyi
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Marina G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego, CA, United States.
| |
Collapse
|
4
|
Beck DAC, Hendrickson EL, Vorobev A, Wang T, Lim S, Kalyuzhnaya MG, Lidstrom ME, Hackett M, Chistoserdova L. An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis. J Bacteriol 2011; 193:4758-65. [PMID: 21764938 PMCID: PMC3165657 DOI: 10.1128/jb.05375-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process.
Collapse
Affiliation(s)
| | | | | | - Tiansong Wang
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | - Sujung Lim
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | - Marina G. Kalyuzhnaya
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | - Mary E. Lidstrom
- Department of Chemical Engineering
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | | | | |
Collapse
|
5
|
Ojala DS, Beck DAC, Kalyuzhnaya MG. Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 2011; 495:99-118. [PMID: 21419917 DOI: 10.1016/b978-0-12-386905-0.00007-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biotechnologies for effective conversion of atmospheric greenhouse gases (CO(2) and CH(4)) into valuable compounds, such as chemical and petrochemical feedstocks or alternative fuels, offer promising new strategies for stabilization of global warming. A novel approach in this field involves the use of methanotrophic bacteria as catalysts for CH(4) conversion. In recent years, extremophilic methanotrophic species related to the genus Methylomicrobium have become favorable systems for bioprocess engineering, due to their high growth rates and tolerance of a wide range of environmental conditions and perturbations. While the cultures hold the potential of producing a broader range of chemicals from methane, the biotechnologies are still limited by the lack of reliable genetic approaches for system-level studies and strain engineering. In this chapter, we describe a set of molecular tools for genetic investigation and alteration of the Methylomicrobium spp.
Collapse
Affiliation(s)
- David S Ojala
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|