1
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
2
|
Xi LC, Li HY, Yin D. Long Non-coding RNA-2271 Promotes Osteogenic Differentiation in Human Bone Marrow Stem Cells. Open Life Sci 2018; 13:404-412. [PMID: 33817109 PMCID: PMC7874714 DOI: 10.1515/biol-2018-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/18/2018] [Indexed: 11/26/2022] Open
Abstract
Background Human bone marrow mesenchymal stem cells (BMSCs) are of great significance for bone regeneration and bone formation. Long non-coding RNAs (lncRNAs) may be involved in modulating cell differentiation. This study aimed to investigate the role of lncR-2271 in promoting osteogenic differentiation in human BMSCs. Methods Human BMSCs were infected using lncR-2271 overexpression (group A) with lentiviral system or transfected with lncR-2271 siRNA (group B). Cells transfected with scrambled plasmids were used as a negative control (group C). Osteogenesis markers were evaluated using alkaline phosphatase (ALP) activity, RUNX2 and osterix (OSX) at protein levels and calcification by Alizarin Red staining. Results BMSCs from group A showed significantly higher ALP activity compared to BMSCs in group B and control group (group C) at both days 7 and 14 following osteogenic induction; ALP activity was significantly lower in the group B compared to the group C. RUNX2 and OSX protein expressions were significantly higher in group A and significantly lower in group B, compared to those in group C, respectively. At day 21, calcification in human BMSCs in group A was significantly higher compared to groups B and C as shown by Alizarin Red staining; calcification was significantly lower in group B compared to group C. Conclusion Our data suggested lncR-2271 played a role in promoting osteogenic differentiation in human BMSCs. This study is the first to illustrate the important role of lncR-2271 in bone formation.
Collapse
Affiliation(s)
- Li-Cheng Xi
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, No 6, Taoyuan Road, Qingxiu District, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong-Yu Li
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, No 6, Taoyuan Road, Qingxiu District, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong Yin
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, No 6, Taoyuan Road, Qingxiu District, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Booth KT, Azaiez H, Jahan I, Smith RJH, Fritzsch B. Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective. Front Genet 2018; 9:156. [PMID: 29868110 PMCID: PMC5951964 DOI: 10.3389/fgene.2018.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian hearing organ is a regular array of two types of hair cells (HCs) surrounded by six types of supporting cells. Along the tonotopic axis, this conserved radial array of cell types shows longitudinal variations to enhance the tuning properties of basilar membrane. We present the current evidence supporting the hypothesis that quantitative local variations in gene expression profiles are responsible for local cell responses to global gene manipulations. With the advent of next generation sequencing and the unprecedented array of technologies offering high throughput analyses at the single cell level, transcriptomics will become a common tool to enhance our understanding of the inner ear. We provide an overview of the approaches and landmark studies undertaken to date to analyze single cell variations in the organ of Corti and discuss the current limitations. We next provide an overview of the complexity of known regulatory mechanisms in the inner ear. These mechanisms are tightly regulated temporally and spatially at the transcription, RNA-splicing, mRNA-regulation, and translation levels. Understanding the intricacies of regulatory mechanisms at play in the inner ear will require the use of complementary approaches, and most probably, a combinatorial strategy coupling transcriptomics, proteomics, and epigenomics technologies. We highlight how these data, in conjunction with recent insights into molecular cell transformation, can advance attempts to restore lost hair cells.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci U S A 2017; 114:10654-10659. [PMID: 28923964 DOI: 10.1073/pnas.1711206114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist's function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7-namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.
Collapse
|
5
|
Koonin EV. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct 2017; 12:5. [PMID: 28187792 PMCID: PMC5303251 DOI: 10.1186/s13062-017-0177-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. Reviewers This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
6
|
LncRNA-uc.167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c. Gene 2016; 590:97-108. [DOI: 10.1016/j.gene.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
7
|
Nwasike C, Ewert S, Jovanovic S, Haider S, Mujtaba S. SET domain-mediated lysine methylation in lower organisms regulates growth and transcription in hosts. Ann N Y Acad Sci 2016; 1376:18-28. [PMID: 26919042 DOI: 10.1111/nyas.13017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the major epigenetic marks, has been found to regulate chromatin-mediated gene transcription. Published studies have established further that methylation is not restricted to nuclear proteins but is involved in many cellular processes, including growth, differentiation, immune regulation, and cancer progression. The biological complexity of lysine methylation emerges from its capacity to cause gene activation or gene repression owing to the specific position of methylated-lysine moieties on the chromatin. Accumulating evidence suggests that despite the absence of chromatin, viruses and prokaryotes also express SET proteins, although their functional roles remain relatively less investigated. One possibility could be that SET proteins in lower organisms have more than one biological function, for example, in regulating growth or in manipulating host transcription machinery in order to establish infection. Thus, elucidating the role of an SET protein in host-pathogen interactions requires a thorough understanding of their functions. This review discusses the biological role of lysine methylation in prokaryotes and lower eukaryotes, as well as the underlying structural complexity and functional diversity of SET proteins.
Collapse
Affiliation(s)
| | - Sinead Ewert
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Srdan Jovanovic
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, London, United Kingdom.
| | - Shiraz Mujtaba
- City University of New York, Medgar Evers College, Brooklyn, New York.
| |
Collapse
|
8
|
The Working Modules of Long Noncoding RNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:49-67. [PMID: 27376731 DOI: 10.1007/978-981-10-1498-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is clear that RNA is more than just a messenger between gene and protein. The mammalian genome is pervasively transcribed, giving rise to tens of thousands of noncoding transcripts, especially long noncoding RNAs (lncRNAs). Whether all of these large transcripts are functional remains to be elucidated, but it is evident that there are many lncRNAs that seem not to be the "noise" of the transcriptome. Recent studies have set out to decode the regulatory role and functional diversity of lncRNAs in human physiological and pathological processes, and accumulating evidence suggests that most of the functional lncRNAs achieve their biological functions by controlling gene expression. In this chapter, we will organize these studies to provide a detailed description of the involvement of lncRNAs in the major steps of gene expression that include epigenetic regulation, RNA transcription, posttranscriptional RNA processing, protein translation, and posttranslational protein modification and highlight the molecular mechanisms through which lncRNAs function, involving the interactions between lncRNAs and other biological macromolecules.
Collapse
|
9
|
Yuan SX, Zhang J, Xu QG, Yang Y, Zhou WP. Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma. Cancer Lett 2015; 379:239-44. [PMID: 26282784 DOI: 10.1016/j.canlet.2015.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
The epigenetic mechanism that incorporates DNA methylation alterations, histone modifications, and non-coding RNA expression has been identified as a major characteristic in distinguishing physiological and pathological settings of cancers including hepatocellular carcinoma (HCC), the third leading cause of mortality related cancer. The advance in methylation modification of chromatin elements (for both genomic DNA and histone tails) and the emerging roles of long noncoding RNA (lncRNA) have given us a better understanding of molecular mechanisms underlying HCC. Recently, methods like genome-wide lncRNA profiling and histone hallmark detection were reported to discover mass tumor-associated lncRNAs epigenetically deregulated by differential chromosome modification, mainly by genomic DNA and histone methylation. Therefore, aberrant methylation modification of certain particular lncRNA genes could be crucial events correlating with unfavorable outcomes in HCC. In addition, amount of lncRNAs could act as a manipulator for DNA methylation or a scaffold for histone modification to affect key signaling pathways in hepatocarcinogenesis. This suggests that methylation modification of chromatin elements may have functional crosstalk with lncRNA. Here, we aim to outline the emerging role of the methylation and lncRNA, and their crosstalk of molecular mechanism.
Collapse
Affiliation(s)
- Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
10
|
Abstract
Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, and development. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases.
Collapse
|
11
|
Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X. A global view of network of lncRNAs and their binding proteins. MOLECULAR BIOSYSTEMS 2014; 11:656-63. [PMID: 25483728 DOI: 10.1039/c4mb00409d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, the long non-coding RNAs (lncRNAs) have obtained wide attention because they have broad and crucial functions in regulating complex biological processes. Many lncRNAs functioned by interfacing with corresponding RNA binding proteins and the complexity of lncRNAs' function was attributed to multiple lncRNA-protein interactions. To gain insights into the global relationship between lncRNAs and their binding proteins, here we constructed a lncRNA-protein network (LPN) based on experimentally determined functional interactions between them. This network included 177 lncRNAs, 92 proteins and 683 relationships between them. Cluster analysis of LPN revealed that some proteins (such as AGO and IGFBP families) and lncRNA (such as XIST and MALAT1) were densely connected, suggesting the potential co-regulated mechanism and functional cross-talk of different lncRNAs. We then characterized the lncRNA functions and found that lncRNA binding proteins (LBPs) enriched in many cancer or cancer-related pathways. Finally, we investigated the different topological properties of LBPs in PPIs network. Compared with disease proteins and average ones, LBPs tend to have significantly higher degree, betweenness, and closeness but a relatively lower clustering coefficient, indicating their centrality and essentiality in the context of a biological network.
Collapse
Affiliation(s)
- Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zeng J, Chen B. Epigenetic mechanisms in the pathogenesis of diabetic retinopathy. Ophthalmologica 2014; 232:1-9. [PMID: 24714375 DOI: 10.1159/000357824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022]
Abstract
Diabetic retinopathy (DR), which arises as a result of an increasing incidence of diabetes mellitus, has gradually become a common disease. Due to its complex pathogenesis, the treatment means of DR are very limited. The findings of several studies have shown that instituting tight glycemic control in diabetic patients does not immediately benefit the progression of retinopathy, and the benefits of good control persist beyond the period of good glycemic control. This has led to the concept of persistent epigenetic changes. Epigenetics has now become an increasingly important area of biomedical research. Recently, important roles of various epigenetic mechanisms have been identified in the pathogenesis of diabetes and its complications. The aim of this review is to provide an overview of the epigenetics and epigenetic mechanisms in diabetes and diabetes complications, and the focus is on the emerging evidence for aberrant epigenetic mechanisms in DR.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha City, PR China
| | | |
Collapse
|
13
|
H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 2013; 110:20693-8. [PMID: 24297921 DOI: 10.1073/pnas.1310201110] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The H19 gene controls the expression of several genes within the Imprinted Gene Network (IGN), involved in growth control of the embryo. However, the underlying mechanisms of this control remain elusive. Here, we identified the methyl-CpG-binding domain protein 1 MBD1 as a physical and functional partner of the H19 long noncoding RNA (lncRNA). The H19 lncRNA-MBD1 complex is required for the control of five genes of the IGN. For three of these genes--Igf2 (insulin-like growth factor 2), Slc38a4 (solute carrier family 38 member 4), and Peg1 (paternally expressed gene 1)--both MBD1 and H3K9me3 binding were detected on their differentially methylated regions. The H19 lncRNA-MBD1 complex, through its interaction with histone lysine methyltransferases, therefore acts by bringing repressive histone marks on the differentially methylated regions of these three direct targets of the H19 gene. Our data suggest that, besides the differential DNA methylation found on the differentially methylated regions of imprinted genes, an additional fine tuning of the expressed allele is achieved by a modulation of the H3K9me3 marks, mediated by the association of the H19 lncRNA with chromatin-modifying complexes, such as MBD1. This results in a precise control of the level of expression of growth factors in the embryo.
Collapse
|
14
|
Song G, Shen Y, Zhu J, Liu H, Liu M, Shen YQ, Zhu S, Kong X, Yu Z, Qian L. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One 2013; 8:e77492. [PMID: 24147006 PMCID: PMC3797806 DOI: 10.1371/journal.pone.0077492] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 01/17/2023] Open
Abstract
Ventricular septal defects (VSD) are the most common form of congenital heart disease, which is the leading non-infectious cause of death in children; nevertheless, the exact cause of VSD is not yet fully understood. Long non-coding RNAs (lncRNAs) have been shown to play key roles in various biological processes, such as imprinting control, circuitry controlling pluripotency and differentiation, immune responses and chromosome dynamics. Notably, a growing number of lncRNAs have been implicated in disease etiology, although an association with VSD has not been reported. In the present study, we conducted an integrated analysis of dysregulated lncRNAs, focusing specifically on the identification and characterization of lncRNAs potentially involving in initiation of VSD. Comparison of the transcriptome profiles of cardiac tissues from VSD-affected and normal hearts was performed using a second-generation lncRNA microarray, which covers the vast majority of expressed RefSeq transcripts (29,241 lncRNAs and 30,215 coding transcripts). In total, 880 lncRNAs were upregulated and 628 were downregulated in VSD. Furthermore, our established filtering pipeline indicated an association of two lncRNAs, ENST00000513542 and RP11-473L15.2, with VSD. This dysregulation of the lncRNA profile provides a novel insight into the etiology of VSD and furthermore, illustrates the intricate relationship between coding and ncRNA transcripts in cardiac development. These data may offer a background/reference resource for future functional studies of lncRNAs related to VSD.
Collapse
Affiliation(s)
- Guixian Song
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gillet FX, Cattoni DI, Petiot-Bécard S, Delalande F, Poignavent V, Brizard JP, Bessin Y, Dorsselaer AV, Declerck N, Sanglier-Cianférani S, Brugidou C, Vignols F. The RYMV-Encoded Viral Suppressor of RNA Silencing P1 Is a Zinc-Binding Protein with Redox-Dependent Flexibility. J Mol Biol 2013; 425:2423-35. [DOI: 10.1016/j.jmb.2013.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
16
|
Petazzi P, Sandoval J, Szczesna K, Jorge OC, Roa L, Sayols S, Gomez A, Huertas D, Esteller M. Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biol 2013; 10:1197-203. [PMID: 23611944 PMCID: PMC3849168 DOI: 10.4161/rna.24286] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mecp2 is a transcriptional repressor protein that is mutated in Rett syndrome, a neurodevelopmental disorder that is the second most common cause of mental retardation in women. It has been shown that the loss of the Mecp2 protein in Rett syndrome cells alters the transcriptional silencing of coding genes and microRNAs. Herein, we have studied the impact of Mecp2 impairment in a Rett syndrome mouse model on the global transcriptional patterns of long non-coding RNAs (lncRNAs). Using a microarray platform that assesses 41,232 unique lncRNA transcripts, we have identified the aberrant lncRNA transcriptome that is present in the brain of Rett syndrome mice. The study of the most relevant lncRNAs altered in the assay highlighted the upregulation of the AK081227 and AK087060 transcripts in Mecp2-null mice brains. Chromatin immunoprecipitation demonstrated the Mecp2 occupancy in the 5′-end genomic loci of the described lncRNAs and its absence in Rett syndrome mice. Most importantly, we were able to show that the overexpression of AK081227 mediated by the Mecp2 loss was associated with the downregulation of its host coding protein gene, the gamma-aminobutyric acid receptor subunit Rho 2 (Gabrr2). Overall, our findings indicate that the transcriptional dysregulation of lncRNAs upon Mecp2 loss contributes to the neurological phenotype of Rett syndrome and highlights the complex interaction between ncRNAs and coding-RNAs.
Collapse
Affiliation(s)
- Paolo Petazzi
- 1 Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute (IDIBELL); Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications 2012; 26:554-61. [PMID: 22739801 DOI: 10.1016/j.jdiacomp.2012.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes mellitus, a chronic metabolic disease associated with both predisposing genetic and environmental factors, is increasing globally. As a result, it is expected that there will also be an increasing incidence of diabetic complications which arise as a result of poor glycemic control. Complications include cardiovascular diseases, nephropathy, retinopathy and diabetic foot ulcers. The findings of several major clinical trials have identified that diabetic complications may arise even after many years of proper glycemic control. This has led to the concept of persistent epigenetic changes. Various epigenetic mechanisms have been identified as important contributors to the pathogenesis of diabetes and diabetic complications. The aim of this review is to provide an overview of the pathobiology of type 2 diabetes with an emphasis on complications, particularly diabetic foot ulcers. An overview of epigenetic mechanisms is provided and the focus is on the emerging evidence for aberrant epigenetic mechanisms in diabetic foot ulcers.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
18
|
Maenner S, Müller M, Becker PB. Roles of long, non-coding RNA in chromosome-wide transcription regulation: lessons from two dosage compensation systems. Biochimie 2012; 94:1490-8. [PMID: 22239950 DOI: 10.1016/j.biochi.2011.12.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/31/2011] [Indexed: 11/17/2022]
Abstract
A large part of higher eukaryotic genomes is transcribed into RNAs lacking any significant open reading frame. This "non-coding part" has been shown to actively contribute to regulating gene expression, but the mechanisms are largely unknown. Particularly instructive examples are provided by the dosage compensation systems, which assure that the single X chromosome in male cells and the two X chromosomes in female cells give rise to similar amounts of gene product. Although this is achieved by very different strategies in mammals and fruit flies, long, non-coding RNAs (lncRNAs) are involved in both cases. Here we summarize recent progress towards unraveling the mechanisms, by which the Xist and roX RNAs mediate the selective association of regulators with individual target chromosomes, to initiate dosage compensation in mammals and fruit flies, respectively.
Collapse
Affiliation(s)
- Sylvain Maenner
- Adolf-Butenandt-Institute and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Schillerstrasse 44, 80336 München, Germany.
| | | | | |
Collapse
|