1
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
2
|
O’Donnell J, Zheng J. Vestibular Hair Cells Require CAMSAP3, a Microtubule Minus-End Regulator, for Formation of Normal Kinocilia. Front Cell Neurosci 2022; 16:876805. [PMID: 35783105 PMCID: PMC9247359 DOI: 10.3389/fncel.2022.876805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Kinocilia are exceptionally long primary sensory cilia located on vestibular hair cells, which are essential for transmitting key signals that contribute to mammalian balance and overall vestibular system function. Kinocilia have a “9+2” microtubule (MT) configuration with nine doublet MTs surrounding two central singlet MTs. This is uncommon as most mammalian primary sensory cilia have a “9+0” configuration, in which the central MT pair is absent. It has yet to be determined what the function of the central MT pair is in kinocilia. Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) regulates the minus end of MTs and is essential for forming the central MT pair in motile cilia, which have the “9+2” configuration. To explore the role of the central MT pair in kinocilia, we created a conditional knockout model (cKO), Camsap3-cKO, which intended to eliminate CAMSAP3 in limited organs including the inner ear, olfactory bulb, and kidneys. Immunofluorescent staining of vestibular organs demonstrated that CAMSAP3 proteins were significantly reduced in Camsap3-cKO mice and that aged Camsap3-cKO mice had significantly shorter kinocilia than their wildtype littermates. Transmission electron microscopy showed that aged Camsap3-cKO mice were in fact missing that the central MT pair in kinocilia more often than their wildtype counterparts. In the examination of behavior, wildtype and Camsap3-cKO mice performed equally well on a swim assessment, right-reflex test, and evaluation of balance on a rotarod. However, Camsap3-cKO mice showed slightly altered gaits including reduced maximal rate of change of paw area and a smaller paw area in contact with the surface. Although Camsap3-cKO mice had no differences in olfaction from their wildtype counterparts, Camsap3-cKO mice did have kidney dysfunction that deteriorated their health. Thus, CAMSAP3 is important for establishing and/or maintaining the normal structure of kinocilia and kidney function but is not essential for normal olfaction. Our data supports our hypothesis that CAMSAP3 is critical for construction of the central MT pair in kinocilia, and that the central MT pair may be important for building long and stable axonemes in these kinocilia. Whether shorter kinocilia might lead to abnormal vestibular function and altered gaits in older Camsap3-cKO mice requires further investigation.
Collapse
Affiliation(s)
- Josephine O’Donnell
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jing Zheng
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Knowles Hearing Center, Northwestern University, Evanston, IL, United States
- *Correspondence: Jing Zheng,
| |
Collapse
|
3
|
Curthoys IS, Grant JW, Pastras CJ, Fröhlich L, Brown DJ. Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence. Front Neurosci 2021; 15:695179. [PMID: 34456671 PMCID: PMC8397526 DOI: 10.3389/fnins.2021.695179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
The evoked response to repeated brief stimuli, such as clicks or short tone bursts, is used for clinical evaluation of the function of both the auditory and vestibular systems. One auditory response is a neural potential - the Auditory Brainstem Response (ABR) - recorded by surface electrodes on the head. The clinical analogue for testing the otolithic response to abrupt sounds and vibration is the myogenic potential recorded from tensed muscles - the vestibular evoked myogenic potential (VEMP). VEMPs have provided clinicians with a long sought-after tool - a simple, clinically realistic indicator of the function of each of the 4 otolithic sensory regions. We review the basic neural evidence for VEMPs and discuss the similarities and differences between otolithic and cochlear receptors and afferents. VEMPs are probably initiated by sound or vibration selectively activating afferent neurons with irregular resting discharge originating from the unique type I receptors at a specialized region of the otolithic maculae (the striola). We review how changes in VEMP responses indicate the functional state of peripheral vestibular function and the likely transduction mechanisms allowing otolithic receptors and afferents to trigger such very short latency responses. In section "ELECTROPHYSIOLOGY" we show how cochlear and vestibular receptors and afferents have many similar electrophysiological characteristics [e.g., both generate microphonics, summating potentials, and compound action potentials (the vestibular evoked potential, VsEP)]. Recent electrophysiological evidence shows that the hydrodynamic changes in the labyrinth caused by increased fluid volume (endolymphatic hydrops), change the responses of utricular receptors and afferents in a way which mimics the changes in vestibular function attributed to endolymphatic hydrops in human patients. In section "MECHANICS OF OTOLITHS IN VEMPS TESTING" we show how the major VEMP results (latency and frequency response) follow from modeling the physical characteristics of the macula (dimensions, stiffness etc.). In particular, the structure and mechanical operation of the utricular macula explains the very fast response of the type I receptors and irregular afferents which is the very basis of VEMPs and these structural changes of the macula in Menière's Disease (MD) predict the upward shift of VEMP tuning in these patients.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - John Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Christopher J. Pastras
- The Menière’s Research Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Laura Fröhlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel J. Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
4
|
Wang D, Zhou J. The Kinocilia of Cochlear Hair Cells: Structures, Functions, and Diseases. Front Cell Dev Biol 2021; 9:715037. [PMID: 34422834 PMCID: PMC8374625 DOI: 10.3389/fcell.2021.715037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are evolutionarily conserved and highly specialized organelles that protrude from cell membranes. Mutations in genes encoding ciliary proteins can cause structural and functional ciliary defects and consequently multiple diseases, collectively termed ciliopathies. The mammalian auditory system is responsible for perceiving external sound stimuli that are ultimately processed in the brain through a series of physical and biochemical reactions. Here we review the structure and function of the specialized primary cilia of hair cells, termed kinocilia, found in the mammalian auditory system. We also discuss areas that might prove amenable for therapeutic management of auditory ciliopathies.
Collapse
Affiliation(s)
- Difei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Curthoys IS, Grant JW, Pastras CJ, Brown DJ, Burgess AM, Brichta AM, Lim R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 2019; 122:259-276. [DOI: 10.1152/jn.00031.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Older studies of mammalian otolith physiology have focused mainly on sustained responses to low-frequency (<50 Hz) or maintained linear acceleration. So the otoliths have been regarded as accelerometers. Thus evidence of otolithic activation and high-precision phase locking to high-frequency sound and vibration appears to be very unusual. However, those results are exactly in accord with a substantial body of knowledge of otolith function in fish and frogs. It is likely that phase locking of otolith afferents to vibration is a general property of all vertebrates. This review examines the literature about the activation and phase locking of single otolithic neurons to air-conducted sound and bone-conducted vibration, in particular the high precision of phase locking shown by mammalian irregular afferents that synapse on striolar type I hair cells by calyx endings. Potassium in the synaptic cleft between the type I hair cell receptor and the calyx afferent ending may be responsible for the tight phase locking of these afferents even at very high discharge rates. Since frogs and fish do not possess full calyx endings, it is unlikely that they show phase locking with such high precision and to such high frequencies as has been found in mammals. The high-frequency responses have been modeled as the otoliths operating in a seismometer mode rather than an accelerometer mode. These high-frequency otolithic responses constitute the neural basis for clinical vestibular-evoked myogenic potential tests of otolith function.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - Christopher J. Pastras
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Daniel J. Brown
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| |
Collapse
|
6
|
Schulz-Mirbach T, Ladich F, Plath M, Heß M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol Rev Camb Philos Soc 2018; 94:457-482. [DOI: 10.1111/brv.12463] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tanja Schulz-Mirbach
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| | - Friedrich Ladich
- Department of Behavioural Biology; University of Vienna; Althanstrasse 14, 1090 Vienna Austria
| | - Martin Plath
- College of Animal Science & Technology; Northwest A&F University; 22 Xinong Road, Yangling Shaanxi China
| | - Martin Heß
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| |
Collapse
|