1
|
Kirupakaran S, Arago G, Hirschhäuser C. A unified strategy for the synthesis of aldohexoses by boronate assisted assembly of CH 2X 2 derived C 1-building blocks. Chem Sci 2023; 14:9838-9842. [PMID: 37736647 PMCID: PMC10510816 DOI: 10.1039/d3sc03778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/23/2023] Open
Abstract
A synthetic strategy for all aldohexoses with individually addressable protecting groups from dihalomethane C1-units is reported. The underlying synthesis of C6-sugar alcohols relies on three consecutive Matteson sequences, vinylation and bishydroxylation. Erythro and threo isomers have been realized for every glycol motif by strategic variation of the sequence.
Collapse
Affiliation(s)
| | - Glib Arago
- University of Duisburg-Essen Universitätsstr. 5-7 45117 Essen Germany
| | | |
Collapse
|
2
|
Liang L, Guo LD, Tong R. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products. Acc Chem Res 2022; 55:2326-2340. [PMID: 35916456 DOI: 10.1021/acs.accounts.2c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The six-membered heterocycles containing oxygen and nitrogen (tetrahydropyrans, pyrans, piperidines) are among the most common heterocyclic structures ubiquitously present in bioactive molecules such as carbohydrates, small-molecule drugs, and natural products. Chemical synthesis of fully functionalized pyrans and piperidines is a research theme of practical importance and scientific significance and, thus, has attracted continuous interest from synthetic chemists. Among the numerous synthetic approaches, Achmatowicz rearrangement (AchR) represents a general and unique strategy that uses biomass-derived furfuryl alcohols as the renewable starting material to obtain fully functionalized six-membered oxygen/nitrogen heterocycles, which provides golden opportunities for organic chemists to address various synthetic challenges.This Account summarizes our 10 years of work on exploiting AchR to address some challenges in organic synthesis ranging from green chemistry and organic methodology to the total synthesis of natural products. We enabled the sustainable and safe use of AchR in a small (academia) or large (industrial) scale by developing two generations of green approaches for AchR (oxone-halide and Fenton-halide), which largely eliminate the use of the most popular, but more toxic and expansive, NBS and m-CPBA. This triggered our intensive interest in developing new green chemistry for important organic reactions, in particular, halogenation/oxidation reactions involving reactive halogenating species with the aim of eliminating the use of commonly used toxic halogen agents such as elemental bromine, chlorine gas, and various N-haloamide reagents (NBS, NCS, and NIS). We successfully employed oxone-halide and Fenton-halide as green alternatives to several mechanistically related organic reactions including arene/alkene halogenation, oxidation or oxidative rearrangement of indoles, oxidation of alcohols/thioacetals, and oxidative halogenation of aldoximes for the in situ generation of nitrile oxide. These green reactions are expected to have a solid impact on the future of organic synthesis in academia and industries.We expanded the synthetic utility of AchR by exploring several new transformations of AchR products and developed a cascade reductive ring expansion, reductive deoxygenation/Heck-Matsuda arylation, palladium-catalyzed C-arylation, and regiodivergent [3 + 2] cycloaddition with 1,3-dicarbonyls. These methodologies offer a new avenue to fully functionalized six-membered heterocycles.The synthetic utility of AchR was demonstrated in our total synthesis of 28 natural products with a pyran/piperidine moiety. The AchR-based strategy endows the total synthesis with scalability, sustainability, and flexibility. The green and scalable approaches developed in our lab for AchR allow us to easily obtain decagrams of synthetically valuable pyrans and/or piperidines with low risk and low cost from biomass-derived furfuryl alcohol/aldehyde.
Collapse
|
3
|
Zhu D, Geng M, Yu B. Total Synthesis of Starfish Cyclic Steroid Glycosides. Angew Chem Int Ed Engl 2022; 61:e202203239. [PMID: 35383396 DOI: 10.1002/anie.202203239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/15/2022]
Abstract
Starfishes have evolved with a special type of secondary metabolites, namely starfish saponins, to ward off various predators and parasites; among them, the starfish cyclic steroid glycosides stand out structurally, featuring a unique 16-membered ring formed by bridging the steroidal C3 and C6 with a trisaccharide. The rigid cyclic scaffold and the congested and vulnerable steroid-sugar etherate linkage present an unprecedented synthetic challenge. Here we report a collective total synthesis of the major starfish cyclic steroid glycosides, namely luzonicosides A (1) and D (2) and sepositoside A (3), with an innovative approach, which entails a de novo construction of the ether-linked hexopyranosyl units, use of olefinic pyranoses as sugar precursors, and a decisive ring-closing glycosylation under the mild gold(I)-catalyzed conditions.
Collapse
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingyu Geng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
4
|
Total Synthesis of Starfish Cyclic Steroid Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
6
|
Li Y, Seber P, Wright EB, Yasmin S, Lannigan DA, O'Doherty GA. The affinity of RSK for cylitol analogues of SL0101 is critically dependent on the B-ring C-4'-hydroxy. Chem Commun (Camb) 2020; 56:3058-3060. [PMID: 32048692 DOI: 10.1039/d0cc00128g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Five cyclitol analogues of SL0101 with variable substitution at the C-4' position (i.e., OH, Cl, F, H, OMe) were synthesized. The series of analogues were evaluated for their ability to inhibit p90 ribosomal S6 kinase (RSK) activity. The study demonstrated the importance of the B-ring C-4' hydroxy group for RSK1/2 inhibition.
Collapse
Affiliation(s)
- Yu Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Pedro Seber
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | - Sharia Yasmin
- Cell & Developmental Biology, Nashville, TN 37232, USA
| | - Deborah A Lannigan
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. and Biomedical Engineering, Nashville, TN 37232, USA and Cell & Developmental Biology, Nashville, TN 37232, USA
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Li Y, Sandusky ZM, Vemula R, Zhang Q, Wu B, Fukuda S, Li M, Lannigan DA, O'Doherty GA. Regioselective Synthesis of a C-4'' Carbamate, C-6'' n-Pr Substituted Cyclitol Analogue of SL0101. Org Lett 2020; 22:1448-1452. [PMID: 32009414 DOI: 10.1021/acs.orglett.0c00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An asymmetric synthesis of two analogues of SL0101 (1) has been achieved. The effort is aimed at the discovery of inhibitors of the p90 ribosomal S6 kinase (RSK) with improved bioavailability. The route relies upon the use of the Taylor catalyst to regioselectively install C-3″ acetyl or carbamate functionality. This study led to the identification of a third-generation analogue of SL0101 with a C-4″ n-Pr-carbamate and a C-3″ acetate with improved RSK inhibitory activity.
Collapse
Affiliation(s)
- Yu Li
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Rajender Vemula
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Qi Zhang
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Bulan Wu
- Division of Natural Sciences, College of Natural & Applied Sciences , University of Guam , Mangilao , Guam 96923
| | - Shinji Fukuda
- Department of Pathology, Microbiology & Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center , Ehime University , Toon , Ehime 791-0295 , Japan.,Department of Biochemistry and Molecular Genetics , Ehime University Graduate School of Medicine , Toon , Ehime 791-0295 , Japan
| | - Mingzong Li
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States.,Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37232 , United States.,Department of Cell and Developmental Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
8
|
Lee J, Kang S, Kim J, Moon D, Rhee YH. A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6-Trideoxypyranoglycosides. Angew Chem Int Ed Engl 2018; 58:628-631. [DOI: 10.1002/anie.201812222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Juyeol Lee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Soyeong Kang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Jungjoon Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Dohyun Moon
- Department of Beamline; Pohang Accelerator Laboratory; Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| |
Collapse
|
9
|
Lee J, Kang S, Kim J, Moon D, Rhee YH. A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6-Trideoxypyranoglycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juyeol Lee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Soyeong Kang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Jungjoon Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Dohyun Moon
- Department of Beamline; Pohang Accelerator Laboratory; Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| |
Collapse
|
10
|
Roscales S, Ortega V, Csákÿ AG. Selective Functionalization of Achmatowicz Rearrangement Products by Reactions with Potassium Organotrifluoroborates under Transition-Metal-Free Conditions. J Org Chem 2018; 83:11425-11436. [PMID: 30036474 DOI: 10.1021/acs.joc.8b01643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repertoire of synthetic transformations of the products of the Achmatowicz rearrangement has been expanded by exploring their reactivity with potassium organotrifluoroborates in the absence of transition metals. Depending on the reaction conditions and the substitution pattern of the starting material, the reaction may lead to the stereoselective synthesis of dihydropyranones (2,6- trans), tetrahydropyranones (2,3- cis-2,6- cis) or functionalized 1,4-dicarbonyl compounds. The method has also been adapted for the one-pot synthesis of functionalized pyrroles.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa , Paseo de Juan XXIII, 1 , 28040 Madrid , Spain
| | - Víctor Ortega
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa , Paseo de Juan XXIII, 1 , 28040 Madrid , Spain
| | - Aurelio G Csákÿ
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa , Paseo de Juan XXIII, 1 , 28040 Madrid , Spain
| |
Collapse
|
11
|
Nakazaki A, Hashimoto K, Ikeda A, Shibata T, Nishikawa T. De Novo Synthesis of Possible Candidates for the Inagami-Tamura Endogenous Digitalis-like Factor. J Org Chem 2017; 82:9097-9111. [PMID: 28787161 DOI: 10.1021/acs.joc.7b01640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
De novo synthesis of possible candidates for the Inagami-Tamura endogenous digitalis-like factor (EDLF) was achieved to validate a previously proposed structure. Our synthetic approach involves a highly regio- and diastereoselective Mizoroki-Heck reaction and a Friedel-Crafts-type cyclodehydration to construct steroidal tetracycle 14 as a versatile common intermediate leading to seven 2,14β-dihydroxyestradiol analogues 1a-c, 2a-c, and 3 as possible candidates. By comparing the potency of inhibitory activity against Na+/K+-ATPase between the synthesized candidates and the EDLF, it was found that the proposed structure is not likely to be a true structure of the Inagami-Tamura EDLF.
Collapse
Affiliation(s)
- Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Keiko Hashimoto
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Ai Ikeda
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Wang HY, Simmons CJ, Zhang Y, Smits AM, Balzer PG, Wang S, Tang W. Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Anomeric Hydroxyl Groups and a Controlled Reduction of the Glycosyl Ester Products. Org Lett 2017; 19:508-511. [DOI: 10.1021/acs.orglett.6b03683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hao-Yuan Wang
- School
of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Christopher J. Simmons
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Yu Zhang
- School
of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Angela M. Smits
- School
of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Paul G. Balzer
- School
of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Shuojin Wang
- School
of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
- School
of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Weiping Tang
- School
of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Ghosh AK, Brindisi M. Achmatowicz Reaction and its Application in the Syntheses of Bioactive Molecules. RSC Adv 2016; 6:111564-111598. [PMID: 28944049 PMCID: PMC5603243 DOI: 10.1039/c6ra22611f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substituted pyranones and tetrahydropyrans are structural subunits of many bioactive natural products. Considerable efforts are devoted toward the chemical synthesis of these natural products due to their therapeutic potential as well as low natural abundance. These embedded pyranones and tetrahydropyran structural motifs have been the subject of synthetic interest over the years. While there are methods available for the syntheses of these subunits, there are issues related to regio and stereochemical outcomes, as well as versatility and compatibility of reaction conditions and functional group tolerance. The Achmatowicz reaction, an oxidative ring enlargement of furyl alcohol, was developed in the 1970s. The reaction provides a unique entry to a variety of pyranone derivatives from functionalized furanyl alcohols. These pyranones provide convenient access to substituted tetrahydropyran derivatives. This review outlines general approaches to the synthesis of tetrahydropyrans, covering general mechanistic aspects of the Achmatowicz reaction or rearrangement with an overview of the reagents utilized for the Achmatowicz reaction. The review then focuses on the synthesis of functionalized tetrahydropyrans and pyranones and their applications in the synthesis of natural products and medicinal agents.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Kim M, Kang S, Rhee YH. De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apiose-Containing Oligosaccharides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mijin Kim
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Soyeong Kang
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Young Ho Rhee
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| |
Collapse
|
15
|
Kim M, Kang S, Rhee YH. De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apiose-Containing Oligosaccharides. Angew Chem Int Ed Engl 2016; 55:9733-7. [DOI: 10.1002/anie.201604199] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Mijin Kim
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Soyeong Kang
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| | - Young Ho Rhee
- Department of Chemistry; POSTECH (Pohang University of Science and Technology); Hyoja-dong San 31 Pohang Nam-gu, Kyungbook 37673 Korea
| |
Collapse
|
16
|
Beattie RJ, Hornsby TW, Craig G, Galan MC, Willis CL. Stereoselective synthesis of protected l- and d-dideoxysugars and analogues via Prins cyclisations. Chem Sci 2016; 7:2743-2747. [PMID: 28660050 PMCID: PMC5477037 DOI: 10.1039/c5sc04144a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
A de novo approach for the rapid construction of orthogonally protected l- and d-deoxysugars and analogues is described. A novel and robust silicon-acetal undergoes Prins cyclisations with a series of homoallylic alcohols in high yield and excellent stereocontrol. Modified Tamao-Fleming oxidation of the resulting silyltetrahydropyrans gives direct access to deoxyglycoside analogues and the approach was showcased in the synthesis of protected l-oliose, a component of the anticancer agent aclacinomycin A.
Collapse
Affiliation(s)
- Ryan J Beattie
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Thomas W Hornsby
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Gemma Craig
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - M Carmen Galan
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Christine L Willis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| |
Collapse
|
17
|
Mishra B, Neralkar M, Hotha S. Stable Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide Reminiscent ofMycobacterium tuberculosisCell Wall Lipoarabinomannan. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Mahesh Neralkar
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Srinivas Hotha
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| |
Collapse
|
18
|
Mishra B, Neralkar M, Hotha S. Stable Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide Reminiscent ofMycobacterium tuberculosisCell Wall Lipoarabinomannan. Angew Chem Int Ed Engl 2016; 55:7786-91. [DOI: 10.1002/anie.201511695] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Mahesh Neralkar
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| | - Srinivas Hotha
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune India
| |
Collapse
|
19
|
Guidotti BB, Coelho F. Sequential Morita–Baylis–Hillman/Achmatowicz reactions: an expeditious access to pyran-3(6H)-ones with a unique substitution pattern. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Abstract
A de novo asymmetric total synthesis of the guanidine alkaloid natural product (+)-monanchorin has been achieved in nine steps from the commodity chemicals furan and caproic acid. The asymmetry of the route was introduced by a Noyori reduction of an acylfuran. In addition, this route relies upon an Achmatowicz rearrangement, a diastereoselective palladium catalyzed glycosylation, reductive amination, and an acid catalyzed bicyclic guanidine mixed acetal formation.
Collapse
Affiliation(s)
- Yuzhi Ma
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
22
|
Li Z, Ip FCF, Ip NY, Tong R. Highlytrans-Selective Arylation of Achmatowicz Rearrangement Products by Reductive γ-Deoxygenation and Heck-Matsuda Reaction: Asymmetric Total Synthesis of (−)-Musellarins A-C and Their Analogues. Chemistry 2015; 21:11152-7. [DOI: 10.1002/chem.201501713] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 01/25/2023]
|
23
|
Gomez AM, Lobo F, Miranda S, Lopez JC. A Survey of Recent Synthetic Applications of 2,3-Dideoxy-Hex-2-enopyranosides. Molecules 2015; 20:8357-94. [PMID: 26007170 PMCID: PMC6272535 DOI: 10.3390/molecules20058357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/03/2022] Open
Abstract
Unsaturated carbohydrate derivatives are useful intermediates in synthetic transformations leading to a variety of compounds. The aim of this review is to highlight the rich chemistry of ∆-2,3 unsaturated pyranosides, emphasizing the variety of transformations that have been carried out in these substrates during the last decade.
Collapse
Affiliation(s)
- Ana M Gomez
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Fernando Lobo
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Silvia Miranda
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - J Cristobal Lopez
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
24
|
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
25
|
Matthies S, Stallforth P, Seeberger PH. Total synthesis of legionaminic acid as basis for serological studies. J Am Chem Soc 2015; 137:2848-51. [PMID: 25668389 DOI: 10.1021/jacs.5b00455] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Legionaminic acid is a nine-carbon diamino monosaccharide that is found coating the surface of various bacterial human pathogens. Its unique structure makes it a valuable biological probe, but access via isolation is difficult and no practical synthesis has been reported. We describe a stereoselective synthesis that yields a legionaminic acid building block as well as linker-equipped conjugation-ready legionaminic acid starting from cheap d-threonine. To set the desired amino and hydroxyl group pattern of the target, we designed a concise sequence of stereoselective reactions. The key transformations rely on chelation-controlled organometallic additions and a Petasis multicomponent reaction. The legionaminic acid was synthesized in a form that enables attachment to surfaces. Glycan microarray containing legionaminic acid revealed that human antibodies bind the synthetic glycoside. The synthetic bacterial monosaccharide is a valuable probe to detect an immune response to bacterial pathogens such as Legionella pneumophila, the causative agent of Legionnaire's disease.
Collapse
Affiliation(s)
- Stefan Matthies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | |
Collapse
|
26
|
Li M, Li Y, Mrozowski RM, Sandusky ZM, Shan M, Song X, Wu B, Zhang Q, Lannigan DA, O’Doherty GA. Synthesis and Structure-Activity Relationship Study of 5a-Carbasugar Analogues of SL0101. ACS Med Chem Lett 2015; 6:95-9. [PMID: 25589938 DOI: 10.1021/ml5004525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022] Open
Abstract
The Ser/Thr protein kinase, RSK, is associated with oncogenesis, and therefore, there are ongoing efforts to develop RSK inhibitors that are suitable for use in vivo. SL0101 is a natural product that demonstrates selectivity for RSK inhibition. However, SL0101 has a short biological half-life in vivo. To address this issue we designed a set of eight cyclitol analogues, which should be resistant to acid catalyzed anomeric bond hydrolysis. The analogues were synthesized and evaluated for their ability to selectively inhibit RSK in vitro and in cell-based assays. All the analogues were prepared using a stereodivergent palladium-catalyzed glycosylation/cyclitolization for installing the aglycon. The l-cyclitol analogues were found to inhibit RSK2 in in vitro kinase activity with a similar efficacy to that of SL0101, however, the analogues were not specific for RSK in cell-based assays. In contrast, the d-isomers showed no RSK inhibitory activity in in vitro kinase assay.
Collapse
Affiliation(s)
- Mingzong Li
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yu Li
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | - Mingde Shan
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Xiwen Song
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bulan Wu
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Qi Zhang
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | - George A. O’Doherty
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Walk JT, Buchan ZA, Montgomery J. Sugar Silanes: Versatile Reagents for Stereocontrolled Glycosylation via Intramolecular Aglycone Delivery. Chem Sci 2015; 6:3448-3453. [PMID: 26000163 PMCID: PMC4435934 DOI: 10.1039/c5sc00810g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new method for the intramolecular glycosylation of alcohols is described.
A new method for the intramolecular glycosylation of alcohols is described. Utilizing carbohydrate-derived silanes, the catalytic dehydrogenative silylation of alcohols is followed by intramolecular glycosylation. Appropriate combinations of silane position and protecting groups allow highly selective access to β-manno, α-gluco, or β-gluco stereochemical relationships as well as 2-azido-2-deoxy-β-gluco- and 2-deoxy-β-glucosides. Intramolecular aglycone delivery from the C-2 or C-6 position provides 1,2-cis or 1,2-trans glycosides, respectively. Multifunctional acceptor substrates such as hydroxyketones and diols are tolerated and are glycosylated in a site-selective manner.
Collapse
Affiliation(s)
- Jordan T Walk
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA. All work was performed at this address
| | - Zachary A Buchan
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA. All work was performed at this address
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA. All work was performed at this address
| |
Collapse
|
28
|
Mrozowski RM, Sandusky ZM, Vemula R, Wu B, Zhang Q, Lannigan DA, O'Doherty GA. De novo synthesis and biological evaluation of C6″-substituted C4″-amide analogues of SL0101. Org Lett 2014; 16:5996-9. [PMID: 25372628 PMCID: PMC4251525 DOI: 10.1021/ol503012k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In an effort to improve
upon the in vivo half-life
of the known ribosomal s6 kinase (RSK) inhibitor SL0101, C4″-amide/C6″-alkyl
substituted analogues of SL0101 were synthesized and evaluated in
cell-based assays. The analogues were prepared using a de novo asymmetric
synthetic approach, which featured Pd-π-allylic catalyzed glycosylation
for the introduction of a C4″-azido group. Surprisingly replacement
of the C4″-acetate with a C4″-amide resulted in analogues
that were no longer specific for RSK in cell-based assays.
Collapse
Affiliation(s)
- Roman M Mrozowski
- Departments of Pathology, Microbiology & Immunology and ⊥Cancer Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Frihed TG, Pedersen CM, Bols M. Synthesis of All EightL-Glycopyranosyl Donors Using CH Activation. Angew Chem Int Ed Engl 2014; 53:13889-93. [DOI: 10.1002/anie.201408209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/31/2022]
|
30
|
Frihed TG, Pedersen CM, Bols M. Synthesis of All EightL-Glycopyranosyl Donors Using CH Activation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Bajaj SO, Shi P, Beuning PJ, O'Doherty GA. Structure activity relationship study of Mezzettiasides natural products and their four new disaccharide analogues for anticancer/antibacterial activity. MEDCHEMCOMM 2014; 5:1138-1142. [PMID: 25729554 DOI: 10.1039/c4md00095a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ten members of the mezzettiaside family of natural products were synthesized and evaluated for anticancer and antibacterial activity. Complete anticancer (H460) and antibacterial (B. subtilis) activities for the ten natural products and four new analogues were found. Comparison to the cleistrioside and cleistetroside classes of natural products were made.
Collapse
Affiliation(s)
- Sumit O Bajaj
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Pei Shi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|