1
|
Morsy NA, Omar MA, Ebrahium MM, Srour AM. New alkanesulfonate-based quinazolinone-acetohydrazide scaffolds: Rational design, synthesis, molecular docking, anticancer properties and potential EGFR and its T790M/L858R mutants inhibitors. Bioorg Chem 2025; 160:108405. [PMID: 40187030 DOI: 10.1016/j.bioorg.2025.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Leveraging their potential anticancer properties, two novel series of quinazolinone-based scaffolds, 3a-i and 7a-i, have been designed, synthesized, and scanned for their anticancer efficacy across three diverse human cancer cell lines, HepG-2, MCF-7, and HCT-116, alongside a normal cell line (BJ-1). Erlotinib and Doxorubicin served as the reference drugs. Notably, derivatives 3i and 7f exhibited the most potent activity against HepG-2, with IC50 values of 1.66 μM and 1.67 μM, respectively, demonstrating about two-fold greater potency than erlotinib and doxorubicin (IC50 = 2.85 μM and 4.25 μM, respectively). Additionally, compound 7i showed superior efficacy against MCF-7 with an IC50 of 3.25 μM, outperforming erlotinib and doxorubicin (IC50 = 3.56 μM and 5.38 μM, respectively). In the case of colon cancer (HCT-116), compound 7i also displayed the highest cytotoxic activity compared to erlotinib and doxorubicin (IC50 = 1.20 μM versus 3.05 and 5.70 μM, respectively). Notably, most tested compounds exhibited a favorable safety profile against the normal human cell line (BJ-1). Furthermore, the derivatives demonstrated significant inhibitory properties on the Epidermal Growth Factor Receptor (EGFR) besides its mutations, EGFRL858R and EGFRT790M, compared with Erlotinib, the reference drug. Compound 7f notably increased Bax and Bcl-2 levels by 1.9 and 1.3 folds, respectively, relative to Erlotinib. Moreover, 7f induced the apoptotic effect, arrested the cell cycle at the G0/G1 phase, and halted the mitotic cycle in HepG-2 cells. To further validate these findings, docking simulations of the promising derivatives 7i and 7f were conducted to assess their anticipated binding affinities with EGFR and its T790M/L858R mutants. Thus, compound 7f has the potential to be developed into a potent anticancer agent.
Collapse
Affiliation(s)
- Nagy A Morsy
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia; Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Mohamad M Ebrahium
- Department of Chemistry, Applied College at Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Pandey SK, Verma S, Upreti S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities. Curr Drug Metab 2024; 25:235-247. [PMID: 38984579 DOI: 10.2174/0113892002312369240703102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Sona Verma
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Nainital, Uttrakhand, 263601, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi-110021, India
| | | |
Collapse
|
3
|
Sherif AY, Harisa GI, Alanazi FK. The Chimera of TPGS and Nanoscale Lipid Carriers as Lymphatic Drug Delivery Vehicles to Fight Metastatic Cancers. Curr Drug Deliv 2024; 21:525-543. [PMID: 37183467 DOI: 10.2174/1567201820666230512122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGSengineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
5
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2023; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
6
|
Fang Y, Li X, Cheng H, Zhang L, Hao J. ANGPTL4 Regulates Lung Adenocarcinoma Pyroptosis and Apoptosis via NLRP3\ASC\Caspase 8 Signaling Pathway to Promote Resistance to Gefitinib. JOURNAL OF ONCOLOGY 2022; 2022:3623570. [PMID: 36467503 PMCID: PMC9718625 DOI: 10.1155/2022/3623570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 10/13/2023]
Abstract
BACKGROUND Prior research has identified ANGPTL4 as a key player in the control of the body's lipid and glucose metabolism and a contributor to the onset of numerous cardiovascular conditions. Recently, it has been shown that ANGPTL4 also plays a critical role in tumor growth and progression. Nowadays, the number of EGFR-TKI resistant patients is increasing, and it is important to investigate the role of ANGPTL4 in regulating gefitinib resistance in PC9/GR non-small-cell lung cancer (NSCLC). METHODS The expression of ANGPTL4 in A549, PC9, H1975, BEAS-2B and PC9/GR cells was verified by Western blot and qRT-PCR assays, and the effect of gefitinib on the proliferative ability of each cell was probed by CCK-8 assay. By using shRNA to inhibit ANGPTL4 expression in cells, the effect of ANGPTL4 on cell migratory ability was examined and the effect of ANGPTL4 on cellular gefitinib sensitivity was confirmed using the CCK-8 assay and the edu proliferation test. Mouse transplantation tumors were constructed, and the effect of ANGPTL4 on cellular gefitinib sensitivity was investigated in vivo by flow cytometry, Tunel staining assay, immunohistochemical staining, and ROS fluorescence staining assay. ANGPTL4 expression in homoRNA overexpression cells was constructed, and the changes in the expression levels of ASC\NLRP3\Caspase 8 pathway and focal and apoptotic proteins were investigated in vitro, in vivo, afterknockdown and overexpression of ANGPTL4 expression by Westen blot assay. RESULTS ANGPTL4 was highly expressed in PC9/GR cells. Interfering with ANGPTL4 expression resulted in decreased proliferation and migration ability, decreased resistance to gefitinib, and increased scorching and apoptosis in PC9/GR cells. Interfering with ANGPTL4 expression in PC9/GR cells was shown to promote sensitivity to gefitinib and to mediate the NLRP3/ASC/Caspase 8 pathway to induce cell scorching and apoptosis. CONCLUSIONS ANGPTL4 promotes gefitinib resistance in PC9/GR cells by regulating the NLRP3/ASC/Caspase 8 pathway to inhibit scorch death. ANGPTL4 may be an effective new target for inhibiting EGFR-TKI resistance in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Yue Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230022, Anhui, China
| | - Xuan Li
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Hao Cheng
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiqing Hao
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
7
|
Mohit, Kumar P, Solanki P, Mangla B, Aggarwal G. Formulation Development, Optimization by Box-Behnken Design, and In Vitro Characterization of Gefitinib Phospholipid Complex Based Nanoemulsion Drug Delivery System. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ren BY, Dai XL, Zhang F, Long X, Huang YL, Chen JM, Lu TB. “Drug–Coformer–Drug” Multicomponent Crystals to Simultaneously Improve the Solubility of Two Insoluble Combined Drugs by Introduction of a Soluble Coformer. CRYSTAL GROWTH & DESIGN 2022; 22:5785-5790. [DOI: 10.1021/acs.cgd.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo-Ying Ren
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xia-Lin Dai
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fang Zhang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangtian Long
- Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin 300410, China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jia-Mei Chen
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
9
|
Ye W, Wu Z, Gao P, Kang J, Xu Y, Wei C, Zhang M, Zhu X. Identified Gefitinib Metabolism-Related lncRNAs can be Applied to Predict Prognosis, Tumor Microenvironment, and Drug Sensitivity in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:939021. [PMID: 35978819 PMCID: PMC9376789 DOI: 10.3389/fonc.2022.939021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Gefitinib has shown promising efficacy in the treatment of patients with locally advanced or metastatic EGFR-mutated non-small cell lung cancer (NSCLC). Molecular biomarkers for gefitinib metabolism-related lncRNAs have not yet been elucidated. Here, we downloaded relevant genes and matched them to relevant lncRNAs. We then used univariate, LASSO, and multivariate regression to screen for significant genes to construct prognostic models. We investigated TME and drug sensitivity by risk score data. All lncRNAs with differential expression were selected for GO/KEGG analysis. Imvigor210 cohort was used to validate the value of the prognostic model. Finally, we performed a stemness indices difference analysis. lncRNA-constructed prognostic models were significant in the high-risk and low-risk subgroups. Immune pathways were identified in both groups at low risk. The higher the risk score the greater the value of exclusion, MDSC, and CAF. PRRophetic algorithm screened a total of 58 compounds. In conclusion, the prognostic model we constructed can accurately predict OS in NSCLC patients. Two groups of low-risk immune pathways are beneficial to patients. Gefitinib metabolism was again validated to be related to cytochrome P450 and lipid metabolism. Finally, drugs that might be used to treat NSCLC patients were screened.
Collapse
Affiliation(s)
- Weilong Ye
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, China
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People’s Hospital, Shenzhen, China
| | - Pengbo Gao
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Jianhao Kang
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Yue Xu
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Chuzhong Wei
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
- *Correspondence: Ming Zhang, ; Xiao Zhu,
| | - Xiao Zhu
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, China
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ming Zhang, ; Xiao Zhu,
| |
Collapse
|
10
|
Yang K, Tian C, Zhang C, Xiang M. The Controversial Role of IL-33 in Lung Cancer. Front Immunol 2022; 13:897356. [PMID: 35634336 PMCID: PMC9134343 DOI: 10.3389/fimmu.2022.897356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Interleukin-33 (IL-33) belongs to the interleukin-1 (IL-1) family, and its structure is similar to IL-18. When cells are damaged or undergo necrosis, mature form of IL-33 is secreted as a cytokine, which can activate the immune system and provide danger signals. The IL-33/ST2 signaling pathway is composed of IL-33, suppression of tumorigenicity 2 (ST2), and IL-1 receptor accessory protein (IL-1RAcP). IL-33 has been reported to be strongly associated with lung cancer progression, and can exhibit opposite effects on lung cancer under different conditions. In this review, we have summarized the structure and basic functions of IL-33, its possible function in immune regulation, and its role in pulmonary fibrosis as well as in lung cancer. We have highlighted the dual regulation of IL-33 in lung cancer and proposed potential lung cancer treatment regimens, especially new immunotherapies, based on its mechanism of action.
Collapse
Affiliation(s)
- Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy of Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ming Xiang,
| |
Collapse
|
11
|
Preparation and Evaluation of Gefitinib Containing Nanoliposomal Formulation for Lung Cancer Therapy. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Moon SJ, Kim Y, Jeon JY, Park SJ, Kwak YG, Kim MG. Pharmacokinetic properties and bioequivalence of gefitinib 250 mg in healthy Korean male subjects. Transl Clin Pharmacol 2021; 29:171-179. [PMID: 34621709 PMCID: PMC8492391 DOI: 10.12793/tcp.2021.29.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
Gefitinib is an anti-cancer drug used to treat non-small cell lung cancer. The objective of this study was to compare the pharmacokinetics and evaluate the bioequivalence of 2 orally administered gefitinib 250 mg tablets in healthy Korean subjects. A randomized, open-label, single-dose, crossover bioequivalence study was conducted. A total of 50 healthy male volunteers were randomized into 2 sequence groups. During each treatment, the subjects received the test or reference formulation of 250 mg gefitinib with a washout period of 21 days. The plasma samples were collected at pre-dose and up to 144 hours post-dose, and plasma drug concentrations were measured using validated liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated, and the formulations were considered as bioequivalent if the 90% confidence intervals (CIs) of the geometric mean ratios were within the bioequivalence limits of 0.8 to 1.25. Forty-one subjects completed the study and were included in the pharmacokinetic analysis. The 90% CIs of the geometric mean ratios of the test formulation to the reference formulation were 0.8115 to 0.9993 for maximum plasma concentration and 0.9119 to 1.0411 for area under the plasma concentration versus time curve from dosing to the last measurable concentration. There were no serious or unexpected adverse events during the study. In healthy Korean adult subjects, the test and reference formulations of gefitinib 250 mg had similar pharmacokinetic parameters and similar plasma concentration-time profiles. The test formulation of gefitinib met the regulatory criteria for assuming bioequivalence. Both formulations were safe and well-tolerated.
Collapse
Affiliation(s)
- Seol Ju Moon
- Center for Clinical Pharmacology and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yunjeong Kim
- Center for Clinical Pharmacology and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Ji-Young Jeon
- Center for Clinical Pharmacology and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Shin-Jung Park
- Research Institute, Chong Kun Dang Pharmaceutical Corp., Yongin 16995, Korea
| | - Yong-Geun Kwak
- Department of Pharmacology, School of Medicine, Jeonbuk National University, Jeonju 54896, Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju 54896, Korea
| | - Min-Gul Kim
- Center for Clinical Pharmacology and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea.,Department of Pharmacology, School of Medicine, Jeonbuk National University, Jeonju 54896, Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
13
|
Mirgany TO, Abdalla AN, Arifuzzaman M, Motiur Rahman AFM, Al-Salem HS. Quinazolin-4(3 H)-one based potential multiple tyrosine kinase inhibitors with excellent cytotoxicity. J Enzyme Inhib Med Chem 2021; 36:2055-2067. [PMID: 34551654 PMCID: PMC8462848 DOI: 10.1080/14756366.2021.1972992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of quinazolin-4(3H)-one derivatives were synthesised and evaluated for their cytotoxicity against human Caucasian breast adenocarcinoma (MCF-7) and human ovarian carcinoma (A2780) cell lines. Cytotoxicity of the most tested compounds was 2- to 30-fold more than the positive control lapatinib (IC50 of 2j = 3.79 ± 0.96; 3j = 0.20 ± 0.02; and lapatinib = 5.9 ± 0.74) against MCF7 cell lines except two compounds (IC50 of 2 b = 15.72 ± 0.07 and 2e = 14.88 ± 0.99). On the other hand, cytotoxicity was 4 − 87 folds (IC50 of 3a = 3.00 ± 1.20; 3 g = 0.14 ± 0.03) more the positive control lapatinib (IC50 = 12.11 ± 1.03) against A2780 cell lines except compound 2e (IC50 = 16.43 ± 1.80). Among the synthesised quinazolin-4(3H)-one derivatives, potent cytotoxic 2f-j and 3f-j were investigated for molecular mechanism of action. Inhibitory activities of the compounds were tested against multiple tyrosine protein kinases (CDK2, HER2, EGFR and VEGFR2) enzymes. As expected, all the quinazolin-4(3H)-one derivatives were showed comparable inhibitory activity against those kinases tested, especially, compound 2i and 3i showed potent inhibitory activity against CDK2, HER2, EGFR tyrosine kinases. Therefore, molecular docking analysis for quinazolin-4(3H)-one derivatives 2i and 3i were performed, and it was revealed that compounds 2i and 3i act as ATP non-competitive type-II inhibitor against CDK2 kinase enzymes and ATP competitive type-I inhibitor against EGFR kinase enzymes. However, in case of HER2, compounds 2i act as ATP non-competitive type-II inhibitor and 3i act as ATP competitive type-I inhibitor. Docking results of known inhibitors were compared with synthesised compounds and found synthesised 2i and 3i are superior than the known inhibitors in case of interactions. In addition, in silico drug likeness properties of quinazolin-4(3H)-one derivatives showed better predicted ADME values than lapatinib.
Collapse
Affiliation(s)
- Tebyan O Mirgany
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Md Arifuzzaman
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Huda S Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Formulation and optimization of gefitinib-loaded nanosuspension prepared using a newly developed dendritic lipopeptide oligomer material. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Liu L, Wang Q, Xie C, Xi N, Guo Z, Li M, Hou X, Xie N, Sun M, Li J, Chen X. Drug interaction of ningetinib and gefitinib involving CYP1A1 and efflux transporters in non-small cell lung cancer patients. Br J Clin Pharmacol 2020; 87:2098-2110. [PMID: 33098714 DOI: 10.1111/bcp.14621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Ningetinib is a tyrosine kinase inhibitor for the treatment of non-small cell lung cancer (NSCLC). The present study aims to investigate the drug interaction of ningetinib and gefitinib and the mechanism of high plasma exposure of N-demethylated ningetinib (M1) in NSCLC patients. METHODS Patients with NSCLC were recruited. Metabolism and transport assays were performed using in vitro models. Deuterated M1 was used to study the effects of ningetinib and gefitinib on M1 efflux in Institute of Cancer Research (ICR) mice. RESULTS Upon co-administration of ningetinib with gefitinib, the plasma exposure of M1 was reduced by 80%, whereas that of ningetinib was not affected. In vitro experiments indicated that CYP1A1 was primarily responsible for M1 formation. Gefitinib was demonstrated to be a strong inhibitor of CYP1A1 with Ki value of 0.095 μM. M1 was identified as a substrate of efflux transporters P-gp and BCRP, while ningetinib and gefitinib were demonstrated to be their inhibitors, which was consistent with the results in mice. However, the inhibitory effect of gefitinib on efflux in vivo was negligible in the presence of ningetinib. CONCLUSION The high plasma exposure of M1 in patients was attributed to the inhibition of M1 efflux by ningetinib and its low tissue affinity. When co-administered, gefitinib inhibited the formation of M1, but due to the low metabolic yield of M1 in vivo, the pharmacokinetics of ningetinib was not influenced. Inhibition of CYP1A1 may increase the concentration of ningetinib in target tissues, and the long-term safety and efficacy of ningetinib combined with gefitinib should be evaluated.
Collapse
Affiliation(s)
- Lu Liu
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Qian Wang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan, 523871, P. R. China
| | - Cen Xie
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Ning Xi
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan, 523871, P. R. China
| | - Zitao Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Ming Li
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan, 523871, P. R. China
| | - Xiangyu Hou
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Ningjie Xie
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Mingming Sun
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan, 523871, P. R. China
| | - Jing Li
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan, 523871, P. R. China
| | - Xiaoyan Chen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
16
|
Tentative identification of gefitinib metabolites in non-small-cell lung cancer patient plasma using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry. PLoS One 2020; 15:e0236523. [PMID: 32702075 PMCID: PMC7377447 DOI: 10.1371/journal.pone.0236523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gefitinib is an orally potent and selective ATP-competitive inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase and is commonly used to treat locally advanced or metastatic non-small-cell lung cancer (NSCLC) with sensitive EGFR mutations. Multiple adverse effects associated with gefitinib, including liver and lung injuries, severe nausea, and diarrhea, have limited its clinical application. Xenobiotic-induced bioactivation is thought to be an important reason for gefitinib toxicity, which encouraged us to clarify the metabolism of gefitinib in NSCLC patients. Materials and methods An ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry (UPLCQ-TOF-MS) method was established to tentatively identify the metabolites of gefitinib in human plasma. The extracted ion chromatogram peak intensity threshold was set at 1500 cps with minimum MS and MS/MS peak intensities of 400 and 100 cps, respectively. Results A total of 18 tentative metabolites were identified. Eight novel tentative metabolites with metabolic changes in dechlorination, defluorination, and hydrogenation on the quinazoline skeleton; removal of a partial or complete 3-chloro-4-fluoroaniline-substituted group; and sulfate conjugation and taurine conjugation were newly discovered in human plasma. Based on structural analysis of the tentative metabolites, the metabolic pathways were proposed. In addition, the pathways of dechlorination, defluorination, and hydrogenation on the quinazoline skeleton; removal of partial or complete 3-chloro-4-fluoroaniline-substituted groups; and sulfate conjugation and taurine conjugation in humans in vivo indicate that novel metabolic pathways exist in humans. Conclusions In summary, the metabolism of gefitinib in humans in vivo is extensive and complex. Based on in vivo evidence, the propoxy-morpholine ring side chain and O-methyl group are the critical metabolic regions of gefitinib in humans. The novel metabolic pathways differ from those of in vitro studies, suggesting that intestinal floral metabolism might be involved.
Collapse
|
17
|
Alhoshani A, Alanazi FE, Alotaibi MR, Attwa MW, Kadi AA, Aldhfyan A, Akhtar S, Hourani S, Agouni A, Zeidan A, Korashy HM. EGFR Inhibitor Gefitinib Induces Cardiotoxicity through the Modulation of Cardiac PTEN/Akt/FoxO3a Pathway and Reactive Metabolites Formation: In Vivo and in Vitro Rat Studies. Chem Res Toxicol 2020; 33:1719-1728. [PMID: 32370496 DOI: 10.1021/acs.chemrestox.0c00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gefitinib (GEF) is a selective inhibitor of the epidermal growth factor receptor (EGFR) used to treat non-small cell lung cancer. Yet, few cases of cardiotoxicity have been reported. However, the role of the PTEN/Akt/FoxO3a pathway, which mediates GEF anticancer activity, in GEF cardiotoxicity remains unclear. For this purpose, in vitro H9c2 cells and in vivo rat cardiomyocytes were utilized as study models. Treatment of H9c2 cells and Sprague-Dawley rats with GEF significantly induced the expression of hypertrophic and apoptotic markers at mRNA and protein levels with an increased plasma level of troponin. This was accompanied by induction of autophagy and mitochondrial dysfunction in H9c2 cells. Inhibition of cardiac EGFR activity and Akt cellular content of in vitro and in vivo rat cardiomyocytes by GEF increased PTEN and FoxO3a gene expression and cellular content. Importantly, treatment of H9c2 cells with PI3K/Akt inhibitor increased PTEN and FoxO3a mRNA expression associated with potentiation of GEF cardiotoxicity. In addition, by using LC-MS/MS, we showed that GEF is metabolized in the rat heart microsomes into one cyanide- and two methoxylamine-adduct reactive metabolites, where their formation was entirely blocked by CYP1A1 inhibitor, α-naphthoflavone. The current study concludes that GEF induces cardiotoxicity through modulating the expression and function of the cardiac PTEN/AKT/FoxO3a pathway and the formation of CYP1A1-mediated reactive metabolites.
Collapse
Affiliation(s)
- Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,Security Forces Hospital Program, P.O. Box 3643, Riyadh 11481, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,Students' University Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Aldhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asad Zeidan
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
18
|
Ghione S, Mabrouk N, Paul C, Bettaieb A, Plenchette S. Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochem Pharmacol 2020; 176:113855. [PMID: 32061562 DOI: 10.1016/j.bcp.2020.113855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
The deregulation of a wide variety of protein kinases is associated with cancer cell initiation and tumor progression. Owing to their indispensable function in signaling pathways driving malignant cell features, protein kinases constitute major therapeutic targets in cancer. Over the past two decades, intense efforts in drug development have been dedicated to this field. The development of protein kinase inhibitors (PKIs) have been a real breakthrough in targeted cancer therapy. Despite obvious successes across patients with different types of cancer, the development of PKI resistance still prevails. Combination therapies are part of a comprehensive approach to address the problem of drug resistance. The therapeutic use of nitric oxide (NO) donors to bypass PKI resistance in cancer has never been tested in clinic yet but several arguments suggest that the combination of PKIs and NO donors may exert a potential anticancer effect. The present review summarized the current state of knowledge on common targets to both PKIs and NO. Herein, we attempt to provide the rationale underlying a potential combination of PKIs and NO donors for future directions and design of new combination therapies in cancer.
Collapse
Affiliation(s)
- Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
19
|
Efficacy and Safety of Gefitinib in Patients with Advanced Head and Neck Squamous Cell Carcinoma: A Meta-Analysis of Randomized Controlled Trials. JOURNAL OF ONCOLOGY 2019; 2019:6273438. [PMID: 31239839 PMCID: PMC6556337 DOI: 10.1155/2019/6273438] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/09/2019] [Accepted: 04/30/2019] [Indexed: 01/30/2023]
Abstract
Background Trials on assessing the benefits of EGFR inhibitors in head and neck squamous cell carcinoma (HNSCC) patients have gradually been published. Nevertheless, the benefits of gefitinib in advanced HNSCC are still unknown. Methods The Cochrane library, PubMed, and EMBASE databases were systematically searched from the inception dates to 17 July 2017, 18 July 2017, and 19 July 2017, respectively. The keywords "head and neck" and gefitinib were used to retrieve in articles and abstracts. An additional search for recently published randomized trials was performed from July 17, 2017, to April 18, 2018. Then we assessed the risk of bias of the included studies based on the Cochrane "Risk of Bias" tool. Quantitative analysis was carried out to evaluate the overall survival (OS), progression free survival (PFS), overall response rate (ORR), and grade 3-4 adverse effects by Review Manager 5.0.2 and the quality-of-life was analyzed in the included studies. Results Seven randomized controlled trials and a total number of 1287 patients were involved. There were no significant differences in OS, PFS, or ORR between gefitinib and no gefitinib group (HR 1.07, 95% CI 0.93 to 1.22, and P=0.35; HR 0.84, 95% CI 0.69 to 1.04, and P=0.11; RR 1.04, 95% CI 0.90 to 1.20, and P =0.60, respectively). However, gefitinib alone was equivalent to chemotherapeutics (i.e., methotrexate; methotrexate + fluorouracil) in ORR in patients with recurrent HNSCC, and a trend of improvement in QOL in gefitinib group was showed. Toxicities revealed no differences except for diarrhea and skin toxicity (p=0.0003; p=0.03, respectively). Conclusion For patients with advanced HNSCC, gefitinib cannot prolong the OS and PFS or improve ORR, and odds of skin toxicity and diarrhea increased. However, gefitinib alone is equivalent to methotrexate or methotrexate + fluorouracil and tends to improve QOL for recurrent patients.
Collapse
|
20
|
Sharma MJ, Kumar MS, Murahari M, Mayur YC. Synthesis of novel gefitinib-based derivatives and their anticancer activity. Arch Pharm (Weinheim) 2019; 352:e1800381. [PMID: 31012144 DOI: 10.1002/ardp.201800381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 11/09/2022]
Abstract
Drug latentiation is a process of modifying a drug molecule structurally to improve its binding affinity as well as increasing the drug-receptor interactions and potentiate its therapeutic potential. In the quest for discovering more potent epidermal growth factor receptor (EGFR) inhibitors, gefitinib-based derivatives were designed by simple structural modification at the secondary amine of gefitinib by N-alkylation. Three gefitinib derivatives (gefitinib-NB, -NP, and -NIP) were synthesized by N-alkylation and phase transfer catalysis. Structural characterization, physicochemical parameters such as solubility, log P, and p K a were determined. Molecular docking studies were carried out to investigate the binding interactions at the active site. Further drug-bovine serum albumin (BSA) protein and drug-calf thymus (CT) DNA interactions were performed to understand the pharmacokinetics of the synthesized derivatives. All the compounds were screened for preliminary in vitro cytotoxic activity against A549, A431 lung, and MDA-MB-231 breast cancer cell lines by MTT assay. The gefitinib-NP and gefitinib-NB derivatives exhibited strong cytotoxic activity compared with gefitinib. They also showed higher drug-BSA and drug-DNA interactions. Molecular docking studies showed the orientation and binding interactions with the EGFR as well as with BSA and CT DNA. The results establish a strong correlation between the experimental and molecular docking studies. EGFR inhibition studies were also carried out for the derivatives and we identified the NP derivative of gefitinib as a potential lead compound. The gefitinib-based derivatives reported herein are cytotoxic agents and can be tested for further pharmacokinetic profiles and toxicity studies which might be helpful for designing more potent gefitinib-based derivatives in the future.
Collapse
Affiliation(s)
- Mrunal J Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Y C Mayur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
21
|
Roolf C, Saleweski JN, Stein A, Richter A, Maletzki C, Sekora A, Escobar HM, Wu XF, Beller M, Junghanss C. Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells. Biomol Ther (Seoul) 2019; 27:492-501. [PMID: 30971063 PMCID: PMC6720533 DOI: 10.4062/biomolther.2018.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/20/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Nitrogen-containing heterocycles such as quinoline, quinazolinones and indole are scaffolds of natural products and have broad biological effects. During the last years those structures have been intensively synthesized and modified to yield new synthetic molecules that can specifically inhibit the activity of dysregulated protein kinases in cancer cells. Herein, a series of newly synthesized isoquinolinamine (FX-1 to 8) and isoindoloquinazolinone (FX-9, FX-42, FX-43) compounds were evaluated in regards to their anti-leukemic potential on human B- and T-acute lymphoblastic leukemia (ALL) cells. Several biological effects were observed. B-ALL cells (SEM, RS4;11) were more sensitive against isoquinolinamine compounds than T-ALL cells (Jurkat, CEM). In SEM cells, metabolic activity decreased with 10 μM up to 26.7% (FX-3), 25.2% (FX-7) and 14.5% (FX-8). The 3-(p-Tolyl) isoquinolin-1-amine FX-9 was the most effective agent against B- and T-ALL cells with IC50 values ranging from 0.54 to 1.94 μM. None of the tested compounds displayed hemolysis on erythrocytes or cytotoxicity against healthy leukocytes. Anti-proliferative effect of FX-9 was associated with changes in cell morphology and apoptosis induction. Further, influence of FX-9 on PI3K/AKT, MAPK and JAK/STAT signaling was detected but was heterogeneous. Functional inhibition testing of 58 kinases revealed no specific inhibitory activity among cancer-related kinases. In conclusion, FX-9 displays significant antileukemic activity in B- and T-ALL cells and should be further evaluated in regards to the mechanisms of action. Further compounds of the current series might serve as templates for the design of new compounds and as basic structures for modification approaches.
Collapse
Affiliation(s)
- Catrin Roolf
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Jan-Niklas Saleweski
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Arno Stein
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Anett Sekora
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Xiao-Feng Wu
- Leibniz-Institute for Catalysis at the University of Rostock, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis at the University of Rostock, Rostock 18059, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock 18057, Germany
| |
Collapse
|
22
|
The long non-coding RNA SNHG5 regulates gefitinib resistance in lung adenocarcinoma cells by targetting miR-377/CASP1 axis. Biosci Rep 2018; 38:BSR20180400. [PMID: 29592872 PMCID: PMC6131202 DOI: 10.1042/bsr20180400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Gefitinib resistance is one of the major obstacles for the treatment of lung adenocarcinoma (LAD). The present study aimed to investigate the effects of the long non-coding RNA (lncRNA), small nucleolar RNA host gene 5SNHG5 on gefitinib resistance in LAD and explore the underlying mechanisms. The quantitative real-time PCR (qRT-PCR) results showed that SNHG5 expression was significantly down-regulated in LAD patients with acquired gefitinib resistance and gefitinib resistant LAD cell lines. SNHG5 overexpression sensitized gefitinib resistant LAD cells to gefitinib treatment, while knockdown of SNHG5 rendered gefitinib sensitive LAD cells to gefitinib treatment. Bioinformatics analysis showed that SNHG5 exerted its function through interaction with miR-377, which was further confirmed by luciferase reporter assay in 293T cells. Overexpression of SNHG5 suppressed the expression of miR-377, while the knockdown of SNHG5 increased the miR-377 expression. MiR-377 expression was significantly up-regulated in LAD specimens with acquired gefitinib resistance and was negatively correlated with SNHG5 expression. In addition, CASP1 was predicted as a downstream target of miR-377 Overexpression of miR-377 suppressed the expression of CASP1 in PC9 cells and knockdown of miR-377 increased the CASP1 expression in PC9GR cells. In vitro functional assay showed that knockdown of CASP1 in SNHG5-overexpressed PC9GR cells abolished their gefitinib resistance. Overall, the present study demonstrated, for the first time, that the SNHG5/miR-377/CASP1 axis functions as an important role in LAD cells gefitinib resistance and potentially contributes to the improvement of LAD diagnosis and therapy.
Collapse
|
23
|
Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 2018; 16:220. [PMID: 30092792 PMCID: PMC6085698 DOI: 10.1186/s12967-018-1593-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC). METHODS A combinative strategy of big data mining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and computational biology was employed to dig HCC-related circRNAs and to explore their potential action mechanisms. A connectivity map (CMap) analysis was conducted to identify potential therapeutic agents for HCC. RESULTS Six differently expressed circRNAs were obtained from three Gene Expression Omnibus microarray datasets (GSE78520, GSE94508 and GSE97332) using the RobustRankAggreg method. Following the RT-qPCR corroboration, three circRNAs (hsa_circRNA_102166, hsa_circRNA_100291 and hsa_circRNA_104515) were selected for further analysis. miRNA response elements of the three circRNAs were predicted. Five circRNA-miRNA interactions including two circRNAs (hsa_circRNA_104515 and hsa_circRNA_100291) and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and hsa-miR-1276) were identified. Then, 1424 target genes of the above five miRNAs and 3278 differently expressed genes (DEGs) on HCC were collected. By intersecting the miRNA target genes and the DEGs, we acquired 172 overlapped genes. A protein-protein interaction network based on the 172 genes was established, with seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) determined from the network. The Gene Oncology, Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses revealed that the seven hubgenes were linked with some cancer-related biological functions and pathways. Additionally, three bioactive chemicals (decitabine, BW-B70C and gefitinib) based on the seven hubgenes were identified as therapeutic options for HCC by the CMap analysis. CONCLUSIONS Our study provides a novel insight into the pathogenesis and therapy of HCC from the circRNA-miRNA-mRNA network view.
Collapse
Affiliation(s)
- Dan-dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dong-yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dian-zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhen-bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|
24
|
Wang L, Zhang H, Zheng J, Wei X, Du J, Lu H, Sun Q, Zhou W, Zhang R, Han Y. Dual silencing of EGFR and HER2 enhances the sensitivity of gastric cancer cells to gefitinib. Mol Carcinog 2018; 57:1008-1016. [PMID: 29637613 DOI: 10.1002/mc.22821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Liying Wang
- Department of Oncology; Chaoyang Central Hospital; Chaoyang Liaoning Province China
| | - Hongfeng Zhang
- Department of Gastric Surgery; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Jiaxin Zheng
- Department of Nephrology; Heilongjiang Academy of Traditional Chinese Medicine; Harbin Heilongjiang Province China
| | - Xiaoli Wei
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Jingwen Du
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Haibo Lu
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Qiuying Sun
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Weiyu Zhou
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Rui Zhang
- Department of Colorectal Surgery; Cancer Hospital of China Medical University; Liaoning Cancer Hospital and Institute; Shenyang Liaoning Province China
| | - Yu Han
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| |
Collapse
|
25
|
Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 2018; 17:36. [PMID: 29455664 PMCID: PMC5817861 DOI: 10.1186/s12943-018-0801-5] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine kinase (PTK) is one of the major signaling enzymes in the process of cell signal transduction, which catalyzes the transfer of ATP-γ-phosphate to the tyrosine residues of the substrate protein, making it phosphorylation, regulating cell growth, differentiation, death and a series of physiological and biochemical processes. Abnormal expression of PTK usually leads to cell proliferation disorders, and is closely related to tumor invasion, metastasis and tumor angiogenesis. At present, a variety of PTKs have been used as targets in the screening of anti-tumor drugs. Tyrosine kinase inhibitors (TKIs) compete with ATP for the ATP binding site of PTK and reduce tyrosine kinase phosphorylation, thereby inhibiting cancer cell proliferation. TKI has made great progress in the treatment of cancer, but the attendant acquired acquired resistance is still inevitable, restricting the treatment of cancer. In this paper, we summarize the role of PTK in cancer, TKI treatment of tumor pathways and TKI acquired resistance mechanisms, which provide some reference for further research on TKI treatment of tumors.
Collapse
Affiliation(s)
- Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Shuliang Song
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| | - Yun-Shan Wang
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China.
| |
Collapse
|
26
|
Ni XL, Chen LX, Zhang H, Yang B, Xu S, Wu M, Liu J, Yang LL, Chen Y, Fu SZ, Wu JB. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv 2017; 24:1501-1512. [PMID: 28961023 PMCID: PMC8241075 DOI: 10.1080/10717544.2017.1384862] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/31/2023] Open
Abstract
Gefitinib (GEF) is the first epidermal growth factor receptor (EGFR)-targeting agent launched as an anticancer drug. It is an accepted opinion that modifying GEF strong hydrophobicity and poor bioavailability would not only enhance its antitumor effects, but also reduce its side effects. In this study, GEF-loadedpoly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) (PCEC) -bearing nanoparticles (GEF-NPs) were prepared by a solid dispersion method and characterized. The particle sizes increased with the increase in GEF/PCEC mass ratio in feed. GEF-NPs (10%) were mono-dispersed, smaller than 24 nm, zeta potential was approximately -18 mV, percentage encapsulation and loading, were more than 9% and 92%, respectively, and drug was slowly released but without a biphasic pattern. Microscopy studies of the optimized formulation confirmed that the prepared nanoparticles are spherical in nature. Cytotoxicity results indicated that cell growth inhibition induced by free GEF and GEF-NPs were dose and time dependent. Compared with free GEF, GEF-NPs enhanced antitumor effects, reduced side effects and significantly prolonged survival time in vivo. CD31, ki-67 and EGFR expression were significantly lower in the GEF-NPs group compared with other groups (p< .05). These findings demonstrated that GEF-NPs have the potential to attain superior outcomes and to overcome complications such as organs toxicity, therapeutic resistance and disease relapse.
Collapse
Affiliation(s)
- Xiao Ling Ni
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Long Xia Chen
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Heng Zhang
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Bo Yang
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Shan Xu
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Jing Liu
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Ling Lin Yang
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Shao Zhi Fu
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| | - Jing Bo Wu
- Department of Oncology, the Affiliated hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Lin Q, Liu G, Zhao Z, Wei D, Pang J, Jiang Y. Design of gefitinib-loaded poly (l-lactic acid) microspheres via a supercritical anti-solvent process for dry powder inhalation. Int J Pharm 2017; 532:573-580. [DOI: 10.1016/j.ijpharm.2017.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/03/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
|
28
|
Liu G, Lin Q, Huang Y, Guan G, Jiang Y. Tailoring the particle microstructures of gefitinib by supercritical CO 2 anti-solvent process. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Wan Y, Yuan Y, Pan Y, Zhang Y. Antitumor activity of high-dose pulsatile gefitinib in non-small-cell lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Exp Ther Med 2017; 13:3067-3074. [PMID: 28587381 DOI: 10.3892/etm.2017.4356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated efficacy in the treatment of advanced non-small cell lung cancer (NSCLC). However, their clinical efficacy is limited by acquired resistance. Drug resistance may be mediated by EGFR transduction, and a number of clinical trials have demonstrated that high-dose pulsatile TKIs may be effective at treating patients with acquired resistance, though their underlying mechanisms of action remain unknown. The aim of the present study was to investigate the antitumor activity of high-dose pulsatile gefitinib in NSCLC model cell lines, namely the EGFR-TKI-sensitive cell line PC9, as a control group, and the EGFR-TKI-resistant cell lines H1975 and H1650. The cell lines were administered with different doses of gefitinib and cell viability was measured using an MTT assay. Cell apoptosis and cycling were also determined by flow cytometry and the expression of phospho (p)-EGFR, EGFR, p-AKT and AKT were measured by western blot analysis. It was observed that the apoptotic rate of H1975 cells treated with high-dose pulsatile gefitinib significantly increased, while levels of p-EGFR and p-AKT were decreased. However, there was no significant difference in the apoptotic rate or level of p-AKT in gefitinib-treated H1650 cells, while p-EGFR levels decreased. By contrast, the EGFR-TKI-sensitive cell line PC9 exhibited sensitivity to gefitinib. It was demonstrated that the apoptosis rates were markedly increased when treated with high dose pulsatile gefitinib in PC9 cell line, while a decrease was noted in p-EGFR and p-AKT. These data suggest that high-dose pulsatile gefitinib treatment may overcome acquired resistance in NSCLC, though its efficacy is dependent on the type of drug resistance mutation(s) present. Furthermore, high-dose pulsatile gefitinib may inhibit tumor growth and induce cell apoptosis by blocking the EGFR signaling pathway. Therefore, if the signaling pathways involved in drug resistance are not activated by the EGFR gene, high-dose pulsatile gefitinib may have little efficacy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yitao Wan
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuan Yuan
- Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ying Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
30
|
Wang B, Jiang H, Wang L, Chen X, Wu K, Zhang S, Ma S, Xia B. Increased MIR31HG lncRNA expression increases gefitinib resistance in non-small cell lung cancer cell lines through the EGFR/PI3K/AKT signaling pathway. Oncol Lett 2017; 13:3494-3500. [PMID: 28529576 PMCID: PMC5431660 DOI: 10.3892/ol.2017.5878] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to gain insight into the molecular mechanism of gefitinib resistance in non-small cell lung cancer (NSCLC), and demonstrate whether long noncoding RNA (lncRNA) expression signatures differ between gefitinib-sensitive PC9 and gefitinib-resistant PC9 (PC9-R) cell lines. PC9 and PC9-R cells were treated with gefitinib and, after 48 h, proliferation and apoptosis were analyzed using a Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Microarray expression profiling of lncRNAs was undertaken in both PC9 and PC9-R cells, and the expression profiles were verified by reverse transcription quantitative-polymerase chain reaction. The EGFR/PI3K/AKT signaling pathway and mitochondrial apoptosis protein expression levels were assessed by western blot analysis. The PC9 cell line treated with gefitinib had a more significant effect on cell viability and apoptosis than the PC9-R cell line (P<0.05). Expression of various lncRNAs differed significantly between the two cell lines, and MIR31HG expression in particular was significantly higher in PC9-R cells. As expected, MIR31HG lncRNA knockdown sensitized PC9-R cells to gefitinib, and further experiments revealed that turning off the EGFR/PI3K/AKT signaling pathway activated expression of p53 in PC9-R cells transfected with si-MIR31HG. Furthermore, PC9-R cells transfected with si-MIR31HG induced cell apoptosis through the mitochondrial apoptosis pathway, and arrested the cell cycle in the G0/G1 phase. The results of the current study suggest that MIR31HG lncRNA levels in PC9-R cells are higher than in PC9 cells. Furthermore, overexpression of MIR31HG lncRNAs may contribute to gefitinib resistance in PC9-R cells through the EGFR/PI3K/AKT pathway, which impacts on cell proliferation, apoptosis and the cell cycle. MIR31HG lncRNA may therefore be a novel candidate biomarker for future therapeutic strategies involving EGFR-TKIs.
Collapse
Affiliation(s)
- Bing Wang
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Hong Jiang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Limin Wang
- Department of Respiration, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Xueqin Chen
- Department of Medical Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Kan Wu
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Shirong Zhang
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Bing Xia
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| |
Collapse
|
31
|
Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Sci Rep 2016; 6:33949. [PMID: 27653775 PMCID: PMC5032012 DOI: 10.1038/srep33949] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 01/23/2023] Open
Abstract
Gefitinib, an EGFR tyrosine kinase inhibitor, is used as FDA approved drug in breast cancer and non-small cell lung cancer treatment. However, this drug has certain side effects and complications for which the underlying molecular mechanisms are not well understood. By systems biology based in silico analysis, we identified off-targets of gefitinib that might explain side effects of this drugs. The crystal structure of EGFR-gefitinib complex was used for binding pocket similarity searches on a druggable proteome database (Sc-PDB) by using IsoMIF Finder. The top 128 hits of putative off-targets were validated by reverse docking approach. The results showed that identified off-targets have efficient binding with gefitinib. The identified human specific off-targets were confirmed and further analyzed for their links with biological process and clinical disease pathways using retrospective studies and literature mining, respectively. Noticeably, many of the identified off-targets in this study were reported in previous high-throughput screenings. Interestingly, the present study reveals that gefitinib may have positive effects in reducing brain and bone metastasis, and may be useful in defining novel gefitinib based treatment regime. We propose that a system wide approach could be useful during new drug development and to minimize side effect of the prospective drug.
Collapse
|
32
|
Sevelda F, Mayr L, Kubista B, Lötsch D, van Schoonhoven S, Windhager R, Pirker C, Micksche M, Berger W. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:134. [PMID: 26526352 PMCID: PMC4630894 DOI: 10.1186/s13046-015-0251-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 11/28/2022]
Abstract
Background Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. Methods We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Results Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Conclusion Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0251-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Sevelda
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Lisa Mayr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Bernd Kubista
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Daniela Lötsch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Reinhard Windhager
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Michael Micksche
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Roma MI, Hocht C, Chiappetta DA, Di Gennaro SS, Minoia JM, Bramuglia GF, Rubio MC, Sosnik A, Peroni RN. Tetronic® 904-containing polymeric micelles overcome the overexpression of ABCG2 in the blood-brain barrier of rats and boost the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine (Lond) 2015; 10:2325-37. [PMID: 26252052 DOI: 10.2217/nnm.15.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To assess the involvement of ABCG2 in the pharmacokinetics of efavirenz in the blood-brain barrier (BBB) and investigate a nanotechnology strategy to overcome its overexpression under a model of chronic oral administration. Materials & methods A model of chronic efavirenz (EFV) administration was established in male Sprague-Dawley rats treated with a daily oral dose over 5 days. Then, different treatments were conducted and drug concentrations in plasma and brain measured. RESULTS Chronic treatment with oral EFV led to the overexpression of ABCG2 in the BBB that was reverted after a brief washout period. Moreover, gefitinib and the polymeric amphiphile Tetronic(®) 904 significantly inhibited the activity of the pump and potentiated the accumulation of EFV in CNS. The same effect was observed when the drug was administered within mixed micelles containing TetronicT904 as the main component. CONCLUSION Tetronic 904-containing polymeric micelles overcame the overexpression of ABCG2 in the BBB caused by chronic administration of EFV then boosting its penetration into the CNS.
Collapse
Affiliation(s)
- Martín I Roma
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Christian Hocht
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Diego A Chiappetta
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Stefania S Di Gennaro
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan M Minoia
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Guillermo F Bramuglia
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Modesto C Rubio
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science & Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roxana N Peroni
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
34
|
Sun T, Jia Y, Xiao D. Interference of STAT 5b expression enhances the chemo-sensitivity of gastric cancer cells to gefitinib by promoting mitochondrial pathway-mediated cell apoptosis. Oncol Rep 2015; 34:227-34. [PMID: 25997700 DOI: 10.3892/or.2015.3994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/07/2015] [Indexed: 02/04/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) 5, including STAT 5a and STAT 5b, was reported to play important roles in the malignant biological behaviors of tumors. However, their roles in gastric cancer, especially for STAT 5b remain unknown. This study aimed to detect the expression of STAT 5b in gastric cancer cells and analyze the role and possible mechanism of STAT 5b in the chemo-sensitivity of gastric cancer cells to gefitinib. A total of 69 patients with gastric carcinomas were analyzed for the expression of STAT 5b in carcinomas and para-carcinomas by immunohistochemistry. Cultured MGC-803 and MKN-45 cells were exposed to gefitinib and/or STAT 5b siRNA. Mitochondrial proteins including Bcl-2, Bax, caspase-3 and caspase-9 were extracted using special kits for detecting mitochondrial pathway-related apoptosis proteins. The results showed that STAT 5b expression was significantly increased in gastric carcinomas compared with para-carcinomas, with a positive rate of 49/69 in carcinomas and 27/69 in para-carcinomas (P=0.001). Gefitinib exposure reduced the relative viabilities of MGC-803 and MKN-45 cells in a concentration- and time-dependent manner, and cell apoptosis increased significantly (P<0.05) with gefitinib treatment (4 mM, 24 h). STAT 5b expression was significantly downregulated by treatment with gefitinib (4 mM, 24 h). Interference of STAT 5b expression by siRNA targeting enhanced the chemo-sensitivity of gastric cancer cells to gefitinib by promoting mitochondrial pathway-mediated apoptosis. Bax, caspase-3 and caspase-9 expression were upregulated, and Bcl-2 expression was downregulated in the combined treatment group (gefitinib+siRNA) compared with the gefitinib (4 mM, 24 h) only group in the MGC-803 and MKN-45 cells (P<0.05). Overall, STAT 5b was upregulated in gastric carcinomas compared with para-carcinomas. Interference of STAT 5b expression by siRNA targeting enhanced the chemo-sensitivity of gastric cancer cells to gefitinib by promoting mitochondrial pathway-mediated cell apoptosis. These findings may be useful for developing new approaches for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Tao Sun
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Dongjie Xiao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
35
|
Wertheimer C, Siedlecki J, Kook D, Mayer WJ, Wolf A, Klingenstein A, Kampik A, Eibl-Lindner K. EGFR inhibitor Gefitinib attenuates posterior capsule opacification in vitro and in the ex vivo human capsular bag model. Graefes Arch Clin Exp Ophthalmol 2014; 253:409-17. [PMID: 25471020 DOI: 10.1007/s00417-014-2875-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Posterior capsule opacification (PCO) occurs as a common complication after cataract surgery. Gefitinib is a selective inhibitor of the epidermal growth factor receptor (EGFR) which represents a potential pharmacological target for PCO prevention. In this in vitro study, we assessed the effect and biocompatibility of Gefitinib in PCO prophylaxis. METHODS The effect of Gefitinib on the key pathological features of PCO was assessed in vitro. We determined growth in the human capsular bag model, prepared from sixteen cadaver eyes that underwent sham cataract surgery. Furthermore, two lens epithelial cell lines, HLE-B3 and FHL-124, were used to determine concentration-based effects on cell proliferation. In addition, cell-migration, matrix-contraction, and cell spreading were investigated. To exclude toxic concentrations, Gefitinib was assessed for its biocompatibility on six different human ocular cell types from the anterior and posterior segment of the eye. RESULTS Gefitinib significantly increased the time until confluence of the capsular bag compared to controls (p < 0.001)). In both human lens epithelial cell lines (HLE-B3 and FHL-124), proliferation decreased significantly and as equally strong after incubation with Gefitinib (p < 0.001), as did chemotactic migration (p = 0.004), matrix contraction (p = 0.001), and cell-spreading (p = 0.001). At the IC50 concentration, Gefitinib was well tolerated by six different human ocular cell types of the anterior and posterior segment. CONCLUSION The specific EGFR inhibitor Gefitinib might become of clinical relevance in PCO prophylaxis as it attenuated cellular growth and other pathological PCO factors in the ex vivo human capsular bag model and in two human lens epithelial cell lines, while showing good biocompatibility in vitro.
Collapse
Affiliation(s)
- Christian Wertheimer
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|