1
|
Galili U. Mutations Inactivating Biosynthesis of Dispensable Carbohydrate-Antigens Prevented Extinctions in Primate/Human Lineage Evolution. J Mol Evol 2025; 93:212-228. [PMID: 40159432 DOI: 10.1007/s00239-025-10243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
The human natural anti-carbohydrate antibodies anti-Gal, anti-Neu5Gc, and anti-Forssman are "living-fossils" that appeared in ancestral apes, monkeys and hominins millions of years ago. These antibodies appeared at various evolutionary periods in few mutated-offspring that lost the ability to synthesize the corresponding dispensable (i.e., nonessential) carbohydrate-antigens, α-gal epitope, Neu5Gc (N-glycolyl neuraminic acid) and Forssman-antigen, respectively. Production of these antibodies is stimulated by environmental antigens such as those of the human microbiota. Elimination of carbohydrate-antigens in the few mutated-offspring was caused by accidental nonsense or missense mutations that inactivated genes encoding enzymes involved in their biosynthesis, while most individuals in parental-populations continued synthesizing these carbohydrate-antigens. It has been suggested that dispensable carbohydrate-antigens which are absent in some mammalian species were evolutionary eliminated due to selective pressure by lethal viruses using these carbohydrate-antigens as "docking" receptors. An alternative selective mechanism which is based on the distribution of anti-Gal, anti-Neu5Gc and anti-Forssman in mammals, is presented in this review and is associated with the protective effects of these natural antibodies. It is suggested that epidemics of lethal enveloped-viruses caused the extinction of parental-populations synthesizing the corresponding carbohydrate-antigens of these antibodies, independent of the cell adhesion mechanisms of such viruses. However, the few mutated offspring were protected by these natural antibodies which bound to carbohydrate-antigens synthesized on viruses as a result of their replication in individuals of the parental-populations. Recent studies suggest that these antibodies continue to contribute to the immune protection of humans against zoonotic infections by viruses presenting α-gal, Neu5Gc or Forssman antigens.
Collapse
Affiliation(s)
- Uri Galili
- Rush University Medical Center, 910 South Michigan Avenue, Apt. 904, Chicago, IL, 60605, USA.
| |
Collapse
|
2
|
Sokolova EV, Kravchenko AO, Sergeeva NV, Kalinovsky AI, Glazunov VP, Bogdanovich LN, Yermak IM. Effect of red seaweed sulfated galactans on initial steps of complement activation in vitro. Carbohydr Polym 2021; 254:117251. [PMID: 33357847 PMCID: PMC7577181 DOI: 10.1016/j.carbpol.2020.117251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/04/2022]
Abstract
Red algal galactans can participate in cell surface biology involving complement system. Polysaccharides inhibit C3 binding to LPS with direct dependence on degree of sulfation. Degree of sulfation mattered in carrageenans capacity to reduce C4 binding to mannan. C4 binding to antibodies was activated in the presence of carrageenans. No relevant structural characteristics were observed in ameliorating C5 cleavage by plasmin.
The research described here presents data on the effect of galactans of red algae, carrageenans (λ/μ/ν-, κ-, κ/β-, and ι/κ-types), and agar on complement system activation in normal human serum. The experiments were based on well surfaces coated with triggering agents for binding initiating complement components —C3 and C4. The sulfated galactans inhibited C3 binding to lipopolysaccharide with direct dependence on the sulfation degree of polysaccharides. Sulfation degree was also important in carrageenans’ capacity to reduce C4 binding to mannan. However, C4 binding to antibodies was considerably activated by carrageenans, especially with 3,6-anhydrogalactose. The gelling carrageenans were able to block antigen binding centers of total serum IgM and with more intensity than non-gelling. No structural characteristics mattered in ameliorating C5 cleavage by plasmin in extrinsic protease complement activation, but λ/μ/ν- and κ/β-carrageenans almost completely inhibited C5 cleavage. Thus, galactans participated in cell surface biology by imitating surface glycans in inhibition of C3 binding and mannose binding lectin, but as to the tthe heclassical pathway these substances stimulated complement, probably due to their structure based on carrabiose.
Collapse
Affiliation(s)
- E V Sokolova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia.
| | - A O Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| | - N V Sergeeva
- Medical Association of the Far East Branch of the Russian Academy of Sciences, Vladivostok, St. Kirova, 95, 690022, Russia
| | - A I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| | - V P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| | - L N Bogdanovich
- Medical Association of the Far East Branch of the Russian Academy of Sciences, Vladivostok, St. Kirova, 95, 690022, Russia
| | - I M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| |
Collapse
|