1
|
Hauser F, Naderer C, Priglinger E, Peterbauer A, Fischer MB, Redl H, Jacak J. Single molecule studies of dynamic platelet interactions with endothelial cells. Front Bioeng Biotechnol 2024; 12:1372807. [PMID: 38638321 PMCID: PMC11025363 DOI: 10.3389/fbioe.2024.1372807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
A biotechnological platform consisting of two-color 3D super-resolution readout and a microfluidic system was developed to investigate platelet interaction with a layer of perfused endothelial cells under flow conditions. Platelet activation has been confirmed via CD62P clustering on the membrane and mitochondrial morphology of ECs at the single cell level were examined using 3D two-color single-molecule localization microscopy and classified applying machine learning. To compare binding of activated platelets to intact or stressed ECs, a femtosecond laser was used to induced damage to single ECs within the perfused endothelial layer. We observed that activated platelets bound to the perfused ECs layer preferentially in the proximity to single stressed ECs. Platelets activated under flow were ∼6 times larger compared to activated ones under static conditions. The CD62P expression indicated more CD62P proteins on membrane of dynamically activated platelets, with a tendency to higher densities at the platelet/EC interface. Platelets activated under static conditions showed a less pronounced CD62P top/bottom asymmetry. The clustering of CD62P in the platelet membrane differs depending on the activation conditions. Our results confirm that nanoscopic analysis using two-color 3D super-resolution technology can be used to assess platelet interaction with a stressed endothelium under dynamic conditions.
Collapse
Affiliation(s)
- Fabian Hauser
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Naderer
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Orthopaedics and Traumatology, Johannes Kepler University Linz, Linz, Austria
| | - Anja Peterbauer
- Red Cross Blood Transfusion Service for Upper Austria, Linz, Austria
| | - Michael B. Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems, Austria
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, Vienna, Austria
| | - Jaroslaw Jacak
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, Vienna, Austria
| |
Collapse
|
2
|
Arnason NA, Johannsson F, Landrö R, Hardarsson B, Gudmundsson S, Lian AM, Reseland J, Rolfsson O, Sigurjonsson OE. Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination. Pathogens 2022; 11:pathogens11030350. [PMID: 35335674 PMCID: PMC8954553 DOI: 10.3390/pathogens11030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. Materials and Methods: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. Results: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. Conclusions: PI has limited effect on protein concentration stored PC supernatant. The protein’s changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
| | - Freyr Johannsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Ragna Landrö
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Björn Hardarsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Sveinn Gudmundsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Aina-Mari Lian
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Janne Reseland
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Olafur E. Sigurjonsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
- Correspondence: ; Tel.: +354-543-5523 or +354-694-9427; Fax: +354-543-5532
| |
Collapse
|
3
|
Mangin PH, Neeves KB, Lam WA, Cosemans JMEM, Korin N, Kerrigan SW, Panteleev MA. In vitro flow-based assay: From simple toward more sophisticated models for mimicking hemostasis and thrombosis. J Thromb Haemost 2021; 19:582-587. [PMID: 34396675 DOI: 10.1111/jth.15143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
In vitro flow-based assays are widely used to investigate the role of platelets and coagulation in hemostasis and thrombosis. Their main advantage over other assays relies on the fact that they integrate blood flow that regulates many aspects of platelet function, including adhesion, activation, and aggregation. Blood flow is also central in the regulation of coagulation through its ability to modulate the local concentrations of coagulation factors within and around thrombi. The most broadly used assay to study thrombus formation consists in perfusing whole blood over immobilized fibrillar collagen through a single channel, which helps to reproduce thrombus formation as it occurs in vivo after vascular injury, with platelets adhering, becoming activated, and forming a mural thrombus. This process can also be studied under conditions of thrombin generation, notably by recalcifying blood collected in sodium citrate. In this manuscript, we briefly discuss the advantages and limits of this broadly used "in vitro thrombus formation model." The main emphasis is on the description of the most recent developments regarding design of new flow models and new techniques, and how these may advance the landscape of in vitro studies into the formation of physiological or pathophysiological thrombi. Challenges linked to mimicking the formation of a hemostatic plug in a healthy vessel or a thrombus in diseased arteries and the complexity of reproducing the various aspects of venous thrombosis are discussed. Future directions are proposed to improve the physiological or pathophysiological relevance of current flow-based assays.
Collapse
Affiliation(s)
- Pierre H Mangin
- INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Keith B Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, USA
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Netanel Korin
- Department of Biomedical Engineering Technion, Israel Institute of Technology, Haifa, Israel
| | - Steven W Kerrigan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
4
|
Vasilyeva EF, Brusov OS. [Platelets, hemostasis and mental disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:103-108. [PMID: 31851180 DOI: 10.17116/jnevro2019119111103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Platelets are an easily accessible model for the study of biochemical mechanisms of mental diseases, including schizophrenia and depression. This literature review addresses a role of platelet activation in the pathogenesis of mental diseases. Platelet activation observed in patients with schizophrenia, depression and other mental illnesses is associated with the development of cardiovascular disease and an increased risk of thrombotic complications, which can be the main cause of morbidity and mortality in patients with mental disorders. A deeper understanding of the biochemical mechanisms of mental disorders will help in the study of clinical consequences of these disorders and in choosing the right therapeutic strategy for patients.
Collapse
Affiliation(s)
| | - O S Brusov
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
5
|
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 2019; 8:E1209. [PMID: 31591302 PMCID: PMC6829615 DOI: 10.3390/cells8101209] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding cell-nanoparticle interactions is critical to developing effective nanosized drug delivery systems. Nanoparticles have already advanced the treatment of several challenging conditions including cancer and human immunodeficiency virus (HIV), yet still hold the potential to improve drug delivery to elusive target sites. Even though most nanoparticles will encounter blood at a certain stage of their transport through the body, the interactions between nanoparticles and blood cells is still poorly understood and the importance of evaluating nanoparticle hemocompatibility is vastly understated. In contrast to most review articles that look at the interference of nanoparticles with the intricate coagulation cascade, this review will explore nanoparticle hemocompatibility from a cellular angle. The most important functions of the three cellular components of blood, namely erythrocytes, platelets and leukocytes, in hemostasis are highlighted. The potential deleterious effects that nanoparticles can have on these cells are discussed and insight is provided into some of the complex mechanisms involved in nanoparticle-blood cell interactions. Throughout the review, emphasis is placed on the importance of undertaking thorough, all-inclusive hemocompatibility studies on newly engineered nanoparticles to facilitate their translation into clinical application.
Collapse
Affiliation(s)
- Kara M de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|