1
|
Trehan S, Singh G, Bector G, Jain P, Mehta T, Goswami K, Chawla A, Jain A, Puri P, Garg N. Gut Dysbiosis and Cardiovascular Health: A Comprehensive Review of Mechanisms and Therapeutic Potential. Cureus 2024; 16:e67010. [PMID: 39280497 PMCID: PMC11402436 DOI: 10.7759/cureus.67010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Recent research has identified gut dysbiosis - an imbalance in the gut microbiota - as a significant factor in the development of CVDs. This complex relationship between gut microbiota and cardiovascular health involves various mechanisms, including the production of metabolites such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs). These metabolites influence lipid metabolism, inflammation, and blood pressure regulation. In addition, the gut-brain axis and neurohormonal pathways play crucial roles in cardiovascular function. Epidemiological studies have linked gut dysbiosis to various cardiovascular conditions, highlighting the potential for therapeutic interventions. Dietary changes, probiotics, and prebiotics have shown promise in modulating gut microbiota and reducing cardiovascular risk factors. This underscores the critical role of gut health in preventing and treating CVDs. However, further research is needed to develop targeted therapies that can enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Shubam Trehan
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Gurjot Singh
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Gaurav Bector
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Prateek Jain
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Tejal Mehta
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Kanishka Goswami
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Avantika Chawla
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Aayush Jain
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Piyush Puri
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | - Nadish Garg
- Division of Cardiology, Memorial Hermann Pearland Hospital, Pearland, USA
- Division of Cardiology, Memorial Hermann Southeast Hospital, Houston, USA
| |
Collapse
|
2
|
Xia T, Kang C, Qiang X, Zhang X, Li S, Liang K, Wang Y, Wang J, Cao H, Wang M. Beneficial effect of vinegar consumption associated with regulating gut microbiome and metabolome. Curr Res Food Sci 2023; 8:100566. [PMID: 38235496 PMCID: PMC10792460 DOI: 10.1016/j.crfs.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 01/19/2024] Open
Abstract
Vinegar is used as fermented condiment and functional food worldwide. Vinegar contains many nutrients and bioactive components, which exhibits health benefits. In this study, the potential effects of Shanxi aged vinegar (SAV) on gut microbiome and metabolome were explored in normal mice. The levels of inflammatory factors were significantly decreased in SAV-treated mice. Immunoglobulin, NK cells and CD20 expression were significantly increased after SAV administration. In addition, SAV intake altered gut microbiota structure by up-regulating Verrucomicrobia, Akkermansia, Hungatella and Alistipes, and down-regulating Firmicutes, Lachnospiraceae_NK4A136_group and Oscillibacter. The differential metabolites were mainly included amino acids, carbohydrates and bile acids. Furthermore, after SAV intake, Verrucomicrobia, and Akkermansia closely impacted the related gut metabolites. These alterations of gut microbiota-related metabolism further modulated some immunoregulatory and inflammatory factors, and confer potential health benefits. Our results imply that vinegar consumption has beneficial effects on regulating gut microbiome and metabolome.
Collapse
Affiliation(s)
- Ting Xia
- Shanxi Provincial Key Laboratory for Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industy Co.,Ltd., Shanxi Taiyuan, 030400, China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chaoyan Kang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiao Qiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaodong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shaopeng Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kai Liang
- Shanxi Provincial Key Laboratory for Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industy Co.,Ltd., Shanxi Taiyuan, 030400, China
| | - Yiming Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jianxin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
3
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|