1
|
Kara K, Pirci G. Immunity, rumen metagenomics, ruminal variables, and growth performance of calves fed milk with sage (Salvia officinalis) essential oil. Trop Anim Health Prod 2023; 56:27. [PMID: 38150074 DOI: 10.1007/s11250-023-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
The study aimed to determine the effect of sage (Salvia officinalis) essential oil (EO) to the drinking milk until the weaning stage of Holstein calves on the growth performance, body measurements, ruminal fermentation, rumen metagenomic profile, proinflammatory cytokines [interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and IL-1β], immune globulins (IgG, IgM, and IgE), and acute phase proteins (serum amyloid-A, SAA). In the study, 24 Holstein calves were divided into three groups as 0 μL (SAG0; control group), 100 μL (SAG100), or 200 μL (SAG200) of sage EO to the milk per calf per day. The addition of sage EO to the milk linearly increased the live weight, feed intake, and daily body weight gain (P < 0.05). The addition of sage EO to the milk in calves linearly increased serum IgG titter dose dependently (P < 0.05), but serum IgM and IgE titters did not change (P > 0.05). The concentrations of serum TNF-α, IL-1β, and IL-6 in the weaned calves linearly decreased by the sage aromatic oil addition to the milk (P < 0.05). The serum SAA concentrations of calves did not differ among the control and treatment groups (P > 0.05). Probiotic Bifidobacterium and Acidaminococcus genus in calf rumen fluid can increase by sage EO addition to milk. The relative abundance of genus Prevotella, Prevotellaceae_NK3B31_group, and Prevotella_9 increase with sage EO. The ruminal ammonia-nitrogen (NH3-N) concentration and total short chain fatty acid (T-SCFA) molarity decreased by sage EO addition to the drinking milk (P < 0.05). The molarities of iso butyric (IBA) and iso valeric acids (IVA) in rumen fluid of the weaned calves linearly reduced by the increasing sage EO dose to the milk (P < 0.05). The butyric acid (BA) and iso caproic acid (ICA) molarities in rumen fluid did not change by the sage EO addition (P > 0.05). Consequently, it has been observed that sage EO addition to the milk of calves positively affected the immune system variables and performance parameters. Sage EO addition of calves before weaning may support the immune system in the eventual immunosuppression at the weaning stage.
Collapse
Affiliation(s)
- Kanber Kara
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, 38280, Kayseri, Türkiye.
- Erciyes University, Research Deanery, Kara Research Group, Kayseri, Türkiye.
| | - Gönül Pirci
- Erciyes University, Research Deanery, Kara Research Group, Kayseri, Türkiye.
- Health Sciences Institute, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, 38280, Kayseri, Türkiye.
| |
Collapse
|
2
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|