1
|
Joseph I, Louis H, Okon EED, Unimuke TO, Udoikono AD, Magu TO, Maitera O, Elzagheid MI, Rhyman L, Ekeng-ita EI, Ramasami P. Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
In this research work, the extraction, characterization, device fabrication, and theoretical investigation of Hibiscus sabdariffa plant extract, for possible application in solid DSSCs, are reported. The plant extract was analyzed using FT-IR and UV–Vis spectrophotometry. Polyaniline on graphene was used as the counter electrode whereas titanium (IV) oxide was used as the photo anode for the fabricated DSSCs. The experimental results obtained for the open circuit voltage, short circuit current density, field factor, maximum power and conversion efficiency are 0.925 V, 0.073 A/cm2, 1.43, 1.04 W, and 0.044 % respectively. The excited states of anthocyanin (delphinidin) and quercetin, the most stable structures of Hibiscus sabdariffa plant extract, were studied using density functional theory method. In addition, the theoretical open circuit voltage, light harvesting efficiency, coupling constant, free energy change, and HOMO–LUMO energy gap were predicted for the photovoltaic properties. The theoretical results suggest that quercetin has relatively better photovoltaic properties and, hence, potentially a better dye for solar cell application.
Collapse
Affiliation(s)
- Innocent Joseph
- Chemistry Department , Modibbo Adama University of Technology , Yola , Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Emmanuel E. D. Okon
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Akaninyene D. Udoikono
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Thomas O. Magu
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Oliver Maitera
- Chemistry Department , Modibbo Adama University of Technology , Yola , Nigeria
| | - Mohamed I. Elzagheid
- Department of Chemical and Process Engineering , Jubail Industrial College , Jubail Industrial City 31961 , Saudi Arabia
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry , Faculty of Science, University of Mauritius , Reduit , Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences , University of Johannesburg , Doornfontein, Johannesburg 2028 , South Africa
| | - Emmanuel I. Ekeng-ita
- Computational and Bio-Simulation Research Group, University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry , Faculty of Physical Sciences, University of Calabar , Calabar , Nigeria
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry , Faculty of Science, University of Mauritius , Reduit , Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences , University of Johannesburg , Doornfontein, Johannesburg 2028 , South Africa
| |
Collapse
|