1
|
Göbel CH, Heinze-Kuhn K, Heinze A, Cirkel A, Göbel H. The Impact of Biseasonal Time Changes on Migraine. Neurol Int 2025; 17:40. [PMID: 40137461 PMCID: PMC11944957 DOI: 10.3390/neurolint17030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Changes in the daily rhythm can trigger migraine attacks. The sensitivity for triggering attacks is closely linked to the regulation of biological rhythms controlled by the hypothalamus. In over 70 countries around the world, the time is changed between daylight savings time and standard time twice a year due to legal regulations. The aim of this study was to investigate whether the time change has an influence on migraine. Methods: In this retrospective study, the headache frequency of patients with episodic or chronic migraine at a tertiary headache center in the years 2020, 2021, and 2022 was evaluated. The primary outcome measure was the frequency of migraine occurrence on either Sunday or Monday of the time change weekend compared to Sunday or Monday before or Sunday or Monday after the time change. Results: Data from 258 patients were analyzed (86.8% women; average age: 51.5 years; average headache frequency: 7.7 days/month; 83.3% episodic migraine). Our results showed a significant increase of 6.4% in migraine frequency on the Sunday and/or Monday in the week after the time change in spring compared to the week before the change. In autumn, conversely, there was a significant reduction of 5.5% in migraine frequency on the Sunday and/or Monday one week after the time change compared to the week before the change. The factor responsible for the significant changes was the increase in migraines on Monday one week after the time change in spring and the decrease in migraines on Sunday one week after the time change in autumn. Conclusions: When switching from standard time to daylight savings time in the spring, the frequency of migraines increases significantly one week after the time change. In autumn, in comparison, there is an inverse trend with a reduction in migraine frequency. These data suggest that synchronization is disturbed when switching to daylight savings time. Conversely, synchronization normalizes in autumn. In view of the high prevalence of migraines, this can have extensive individual and social consequences.
Collapse
Affiliation(s)
- Carl H. Göbel
- Kiel Migraine and Headache Center, 24149 Kiel, Germany; (K.H.-K.); (A.H.); (A.C.); (H.G.)
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24149 Kiel, Germany
| | - Katja Heinze-Kuhn
- Kiel Migraine and Headache Center, 24149 Kiel, Germany; (K.H.-K.); (A.H.); (A.C.); (H.G.)
| | - Axel Heinze
- Kiel Migraine and Headache Center, 24149 Kiel, Germany; (K.H.-K.); (A.H.); (A.C.); (H.G.)
| | - Anna Cirkel
- Kiel Migraine and Headache Center, 24149 Kiel, Germany; (K.H.-K.); (A.H.); (A.C.); (H.G.)
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
| | - Hartmut Göbel
- Kiel Migraine and Headache Center, 24149 Kiel, Germany; (K.H.-K.); (A.H.); (A.C.); (H.G.)
| |
Collapse
|
2
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Marcos P, Sánchez ML, Coveñas R. Neuropeptides in the hypothalamus. VITAMINS AND HORMONES 2024; 127:1-50. [PMID: 39864939 DOI: 10.1016/bs.vh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus is one of the most complex region in the central nervous system regarding neuroanatomy, neurochemical content, neuropeptide/classical neurotransmitter interactions, physiological actions, and pathophysiology. Hypothalamic neuropeptides have been involved in a large plethora of mechanisms related with obesity, anxiety, feeding, energy metabolism, defensive behavior, mood, and reproduction. The therapeutic potential of these findings is enormous but the physiological complexity occurring in the hypothalamus is huge due in part to the interactions between numerous neuropeptides as well as between neuropeptides and other neuroactive substances. Here, we review the development and neuroanatomy of the hypothalamus as well as the involvement of 31 neuropeptides in hypothalamic functions and pathologies. Alterations in the secretion, release, and/or concentrations of neuropeptides and/or their hypothalamic receptors can trigger different pathologies. Several therapeutic strategies that could be carried out by adjusting neuropeptide levels in the hypothalamus are suggested. The combination of imaging techniques with a detailed neurochemical knowledge of the hypothalamus would be an excellent diagnostic tool, allowing personalized treatment. Several approaches for future research that may contribute to improve or resolve these pathologies are also mentioned.
Collapse
Affiliation(s)
- Pilar Marcos
- Human Neuroanatomy Laboratory, Regional Center for Biomedical Research (CRIB), School of Medicine, Universidad de Castilla-La Mancha, Albacete, Spain.
| | - Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, Salamanca, Spain; Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Hypocretin-1 suppresses malignant progression of glioblastoma cells through Notch1 signaling pathway. Brain Res Bull 2023; 196:46-58. [PMID: 36925051 DOI: 10.1016/j.brainresbull.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.
Collapse
|
7
|
Demidova A, Kahl E, Fendt M. Orexin deficiency affects sensorimotor gating and its amphetamine-induced impairment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110517. [PMID: 35101602 DOI: 10.1016/j.pnpbp.2022.110517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
The orexin neuropeptides have an important role in the regulation of the sleep/wake cycle and foraging, as well as in reward processing and emotions. Furthermore, recent research implicates the orexin system in different behavioral endophenotypes of neuropsychiatric diseases such as social avoidance and cognitive flexibility. Utilizing orexin-deficient mice, the present study tested the hypothesis that orexin is involved in two further mouse behavioral endophenotypes of neuropsychiatric disorders, i.e., sensorimotor gating and amphetamine sensitivity. The data revealed that orexin-deficient mice expressed a deficit in sensorimotor gating, measured by prepulse inhibition of the startle response. Amphetamine treatment impaired prepulse inhibition in wildtype and heterozygous orexin-deficient mice, but had no effects in homozygous orexin-deficient mice. Furthermore, locomotor activity and center time in the open field was not affected by orexin deficiency but was similarly increased or decreased, respectively, by amphetamine treatment in all genotypes. These data indicate that the orexin system modulates prepulse inhibition and is involved in mediating amphetamine's effect on prepulse inhibition. Future studies should investigate whether pharmacological manipulations of the orexin system can be used to treat neuropsychiatric diseases associated with deficits in sensorimotor gating, such as schizophrenia or attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Alexandrina Demidova
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Psychology Master Program, Otto-von-Guericke University Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Psychology Master Program, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
8
|
Gupta A, Bowirrat A, Gomez LL, Baron D, Elman I, Giordano J, Jalali R, Badgaiyan RD, Modestino EJ, Gold MS, Braverman ER, Bajaj A, Blum K. Hypothesizing in the Face of the Opioid Crisis Coupling Genetic Addiction Risk Severity (GARS) Testing with Electrotherapeutic Nonopioid Modalities Such as H-Wave Could Attenuate Both Pain and Hedonic Addictive Behaviors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:552. [PMID: 35010811 PMCID: PMC8744782 DOI: 10.3390/ijerph19010552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023]
Abstract
In the United States, amid the opioid overdose epidemic, nonaddicting/nonpharmacological proven strategies are available to treat pain and manage chronic pain effectively without opioids. Evidence supporting the long-term use of opioids for pain is lacking, as is the will to alter the drug-embracing culture in American chronic pain management. Some pain clinicians seem to prefer classical analgesic agents that promote unwanted tolerance to analgesics and subsequent biological induction of the "addictive brain". Reward genes play a vital part in modulation of nociception and adaptations in the dopaminergic circuitry. They may affect various sensory and affective components of the chronic pain syndromes. The Genetic Addiction Risk Severity (GARS) test coupled with the H-Wave at entry in pain clinics could attenuate pain and help prevent addiction. The GARS test results identify high-risk for both drug and alcohol, and H-Wave can be initiated to treat pain instead of opioids. The utilization of H-Wave to aid in pain reduction and mitigation of hedonic addictive behaviors is recommended, notwithstanding required randomized control studies. This frontline approach would reduce the possibility of long-term neurobiological deficits and fatalities associated with potent opioid analgesics.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Luis Llanos Gomez
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
| | - David Baron
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - John Giordano
- South Beach Detox & Treatment Center, North Miami Beach, FL 33169, USA;
| | - Rehan Jalali
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX 78249, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | | | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
| | - Anish Bajaj
- Bajaj Chiropractic, New York, NY 10010, USA;
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX 78249, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
| |
Collapse
|