1
|
Zhao X, Fan Z, Yin Q, Yang J, Wu G, Tang S, Ouyang X, Liu Z, Chen X, Tao H. Aberrant white matter structural connectivity of nucleus accumbens in patients with major depressive disorder: A probabilistic fibre tracing study. J Affect Disord 2025; 381:158-165. [PMID: 40185407 DOI: 10.1016/j.jad.2025.03.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Extensive neuroimaging studies have established that functional abnormalities and morphological alterations in the nucleus accumbens (NAc) are implicated in major depressive disorder (MDD), but changes in its white matter structural connectivity (SC) remain unclear. We aimed to elucidate the changes in the white matter fibre connectivity of the NAc in MDD patients. METHODS This study used probabilistic fibre tracking to analyze the diffusion tensor imaging (DTI) data of 125 MDD patients and 129 healthy controls (HCs), calculating the strength of SC (sSC) from bilateral NAc to the entire brain and its correlation with depressive symptoms. RESULTS Compared to HCs, MDD exhibited increased sSC between the left NAc (L.NAc) and regions involving the left middle frontal gyrus, bilateral cingulate gyrus (CG), bilateral hippocampus, left caudate, left medial superior occipital gyrus, right globus pallidus, right superior and middle temporal gyrus, right precuneus, right insula, and right posterior parietal thalamus. Enhanced sSC was also observed between the right NAc (R.NAc) and the left temporal lobe, left posterior superior temporal sulcus (pSTS), bilateral lateral occipital cortex, left hippocampus, right putamen and right ventral occipital cortex. The sSC of L.NAc-left CG and R.NAc-left pSTS was positively correlated with HAMD scores in MDD. CONCLUSIONS Abnormal white matter connectivity of the NAc primarily affects the cortico-limbic circuit, cortico-basal ganglia circuit, and the temporal-occipital cortical regions in patients with MDD, along with the asymmetrical features of the inter-hemispheric SC related to NAc. These alteration may underlie the dysfunction of reward processing and emotion regulation in MDD.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zebin Fan
- Department of Psychiatry, The Fifth People's Hospital of Xiangtan City, Xiangtan 411100, China
| | - Qirui Yin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Guowei Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xudong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haojuan Tao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Wang Y, Huang G, Wu Y, Xiong L, Chen Y, Li H, Long F, Li Q, Sun H, Kemp GJ, Liu L, Gong Q, Li F. Brain structural and functional magnetic resonance imaging alterations in individuals with convergence insufficiency. Ophthalmic Physiol Opt 2025; 45:656-665. [PMID: 39963818 DOI: 10.1111/opo.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE Individuals with convergence insufficiency (CI) encounter challenges in turning their eyes inward during near work. It is unclear how this relates to brain structural and functional alterations. This study aimed to explore the neural mechanism underlying CI using multimodal brain magnetic resonance imaging (MRI). METHODS Thirty-four CI participants and 35 healthy controls (HC) were recruited, who underwent visual examinations and brain MRI scanning. Structural MRI data were analysed to calculate cortical thickness, volume and surface area. Fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were obtained from resting-state functional MRI data. The brain structural and functional metrics were compared between the two groups followed by correlation analyses between clinical measurements and significant brain features. RESULTS Relative to HC, individuals with CI had lower grey matter volume (GMV) and surface area in the right frontal eye fields, parietal eye fields and left medial orbitofrontal cortex, higher GMV and surface area in the right middle frontal and inferior temporal gyri and higher fALFF of the left cerebellum and functional connection between bilateral cerebellums. GMV of the right middle frontal gyrus and fALFF in the left cerebellum were positively correlated with the near point of convergence in all participants. CONCLUSIONS Lower structural metrics in the visual and oculomotor cortices and higher functional activity in the cerebellum may underpin convergence dysfunction and visual fatigue, while higher structural metrics in the right middle frontal and inferior temporal gyri reflect partial compensation for the visual and oculomotor cortex defects, thereby maintaining attention and parallax information processing. This study may enhance understanding of the neural mechanism of CI by revealing the impact of abnormal visual experiences of CI on the brain with disassociated structural and functional alterations in the vergence system.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gantian Huang
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Wu
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Xiong
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Yufei Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Haoran Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fenghua Long
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Graham J Kemp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Longqian Liu
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
3
|
Pelak VS. Disorders of Higher-order Visual Function. Continuum (Minneap Minn) 2025; 31:543-565. [PMID: 40179408 DOI: 10.1212/con.0000000000001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
OBJECTIVE This article provides an overview of disorders of higher-order visual function, encompassing key clinical features, methods for clinical assessment, anatomic localization, and etiologies associated with these disorders. A review of the organization and properties of the brain's visual system is introduced to enhance understanding and facilitate clinical recognition of higher-order visual dysfunction. LATEST DEVELOPMENTS Advances in the visual neurosciences have increased our understanding of the underlying properties of visual neurons. New therapies are available to treat diseases that impact cortical neurons and their white matter connections. Thus, recognizing the signs and symptoms of these disorders and using the proper assessment tools to measure dysfunction are essential for preventing disability. ESSENTIAL POINTS Functional specialization for distinct visual features defines higher-order visual regions and their corresponding networks. Damage to specialized regions along the occipitoparietal pathway leads to impaired motion processing and visuospatial perception, whereas damage to the occipitotemporal regions results in visual agnosia, including impaired color, object, and facial recognition. Patients experiencing higher-order visual dysfunction do not express symptoms significantly different from those with ocular disorders. Identifying higher-order visual dysfunction requires knowledge of the anatomy and visual properties of neurons in these regions. Assessment of higher-order visual functions can be incorporated into the neurologic mental status examination and prevent delays in diagnosis.
Collapse
|
4
|
Ling Q, Yuan X, Ou Y, Wang J, Duan L, Cao L, Zhang P. Characteristics of Cognitive Event-Related Potential Components and N170 Source Analysis in Patients with Acute Cerebellar Infarction. CEREBELLUM (LONDON, ENGLAND) 2025; 24:23. [PMID: 39751757 DOI: 10.1007/s12311-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
This study aims to evaluate cognitive impairments in patients with acute cerebellar infarction using event-related potentials (ERP) and electrophysiological source imaging (ESI). Thirty patients with acute cerebellar infarction and 32 healthy volunteers were selected. Cognitive potentials were recorded and measured using a visual Oddball paradigm. Source analysis of the N170 component was performed using standardized low-resolution brain electromagnetic tomography (sLORETA) to compare the standardized current density distribution between the two groups under different stimuli. For inverted and upright face stimuli, the amplitudes of N170, VPP, and N300 in the patient group were significantly lower than those in the control group (p < 0.05). For upright house stimuli, the VPP amplitude in the patient group was also lower than that in the control group (p < 0.05). Source analysis revealed that the brain regions with significant differences between the acute cerebellar infarction group and the control group included the temporal and parietal lobes. Specifically, activation in the precuneus was reduced during inverted face stimuli; activation in the middle temporal gyrus was reduced during upright face stimuli; and activation in the middle temporal gyrus and fusiform gyrus was increased during both inverted and upright house stimuli. Patients with acute cerebellar infarction exhibit abnormal P100, N170/VPP, and N300 amplitudes. Source analysis of the N170 component revealed altered activation in the middle and inferior temporal gyri, fusiform gyrus, middle occipital gyrus, and precuneus, which play a role in selective cognitive impairments following cerebellar infarction.
Collapse
Affiliation(s)
- Qirong Ling
- Hebei North University, Zhangjiakou, 075132, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Jing Wang
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Liqin Duan
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Lingyun Cao
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China.
| |
Collapse
|
5
|
Behrmann M. Hemispheric asymmetries in face recognition in health and dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:433-447. [PMID: 40074413 DOI: 10.1016/b978-0-443-15646-5.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A defining characteristic of the human brain is that, notwithstanding the clear anatomic similarities, the two cerebral hemispheres have several different functional superiorities. The focus of this chapter is on the hemispheric asymmetry associated with the function of face identity processing, a finely tuned and expert behavior for almost all humans that is acquired incidentally from birth and continues to be refined through early adulthood. The first section lays out the well-accepted doctrine that face perception is a product of the right hemisphere, a finding based on longstanding behavioral data from healthy adult human observers. Data are then presented from neuropsychologic studies conducted with individuals with prosopagnosia, which is either acquired after a lesion to the right hemisphere or is developmental in nature with no obvious lesion. The second section reviews data on the neural correlates of face perception, gathered using a host of imaging methodologies all the way from electroencephalography (EEG) through functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies to transcranial magnetic stimulation and intracranial depth recording. The penultimate section reviews empirical findings that track the emergence of the hemispheric asymmetry for faces, and offers a theoretical proposal that lays out possible origins of the adult asymmetry profile. Lastly, the hemispheric asymmetry associated with the perception of emotional face expression is considered. While considerable progress has been made in understanding the functional organization of the human cerebral cortex and its biases and asymmetries, much remains to be determined and the many inconsistencies remain to be reconciled in future research.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Benítez-Burraco A, Progovac L. Syntax and the brain: language evolution as the missing link(ing theory)? Front Psychol 2024; 15:1445192. [PMID: 39526128 PMCID: PMC11543476 DOI: 10.3389/fpsyg.2024.1445192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This paper provides proof of concept that neurolinguistic research on human language syntax would benefit greatly by expanding its scope to include evolutionary considerations, as well as non-propositional functions of language, including naming/nicknaming and verbal aggression. In particular, an evolutionary approach can help circumvent the so-called granularity problem in studying the processing of syntax in the brain, that is, the apparent mismatch between the abstract postulates of syntax (e.g. Tense Phrase (TP), Determiner Phrase (DP), etc.) and the concrete units of neurobiology (neurons, axons, etc.). Methods First, we decompose syntax into its evolutionary primitives, identifying one of the earliest stages as a simple, flat combination of just one verb and one noun. Next, we identify proxies ("living fossils") of such a stage in present-day languages, including compounds and small clauses, lacking at least some layers of structure, e.g. TPs and DPs. These proxies of ancestral language have been subjected to fMRI neuroimaging experiments. Results We discuss the finding that less hierarchical small clauses, in contrast to full sentences with TPs and DPs, show reduced activation in the left Broca's area (BA) 44 and the right basal ganglia, consistent with the hypothesis that more recent, more elaborate syntax requires more connectivity in the Broca's-basal ganglia network, whose neuronal density has been significantly enhanced in recent evolution, implicating mutations in FOXP2 and other genes. We also discuss the finding that the processing of ancestral verb-noun compounds, which are typically used for (derogatory) naming and nicknaming, shows enhanced activation in the right fusiform gyrus area (BA 37), the area that is implicated in the processing of metaphoricity and imageability, but also in naming and face recognition, opening up an intriguing possibility that the enhanced face recognition in humans was facilitated by the early emergence of a simple syntactic strategy for naming. Discussion The considerations in this paper are consistent with the hypothesis of a gradual gene-culture co-evolution of syntax and the brain, targeting cortico-striatal brain networks. It is also of note that a sound grounding in neurobiology of language should in turn inform syntactic theories themselves.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ljiljana Progovac
- Department of English, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
7
|
Angelini L, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Bidirectional and Cross-Hemispheric Modulations of Face-Selective Neural Activity Induced by Electrical Stimulation within the Human Cortical Face Network. Brain Sci 2024; 14:906. [PMID: 39335402 PMCID: PMC11429542 DOI: 10.3390/brainsci14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
A major scientific objective of cognitive neuroscience is to define cortico-cortical functional connections supporting cognitive functions. Here, we use an original approach combining frequency-tagging and direct electrical stimulation (DES) to test for bidirectional and cross-hemispheric category-specific modulations within the human cortical face network. A unique patient bilaterally implanted with depth electrodes in multiple face-selective cortical regions of the ventral occipito-temporal cortex (VOTC) was shown 70 s sequences of variable natural object images at a 6 Hz rate, objectively identifying deviant face-selective neural activity at 1.2 Hz (i.e., every five images). Concurrent electrical stimulation was separately applied for 10 seconds on four independently defined face-selective sites in the right and left VOTC. Upon stimulation, we observed reduced or even abolished face-selective neural activity locally and, most interestingly, at distant VOTC recording sites. Remote DES effects were found up to the anterior temporal lobe (ATL) in both forward and backward directions along the VOTC, as well as across the two hemispheres. This reduction was specific to face-selective neural activity, with the general 6 Hz visual response being mostly unaffected. Overall, these results shed light on the functional connectivity of the cortical face-selective network, supporting its non-hierarchical organization as well as bidirectional effective category-selective connections between posterior 'core' regions and the ATL. They also pave the way for widespread and systematic development of this approach to better understand the functional and effective connectivity of human brain networks.
Collapse
Affiliation(s)
- Luna Angelini
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Corentin Jacques
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Louis Maillard
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
8
|
Robert S, Granovetter MC, Patterson C, Behrmann M. Hemispheric functional organization, as revealed by naturalistic neuroimaging, in pediatric epilepsy patients with cortical resections. Proc Natl Acad Sci U S A 2024; 121:e2317458121. [PMID: 38950362 PMCID: PMC11252739 DOI: 10.1073/pnas.2317458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/14/2024] [Indexed: 07/03/2024] Open
Abstract
Functional changes in the pediatric brain following neural injuries attest to remarkable feats of plasticity. Investigations of the neurobiological mechanisms that underlie this plasticity have largely focused on activation in the penumbra of the lesion or in contralesional, homotopic regions. Here, we adopt a whole-brain approach to evaluate the plasticity of the cortex in patients with large unilateral cortical resections due to drug-resistant childhood epilepsy. We compared the functional connectivity (FC) in patients' preserved hemisphere with the corresponding hemisphere of matched controls as they viewed and listened to a movie excerpt in a functional magnetic resonance imaging (fMRI) scanner. The preserved hemisphere was segmented into 180 and 200 parcels using two different anatomical atlases. We calculated all pairwise multivariate statistical dependencies between parcels, or parcel edges, and between 22 and 7 larger-scale functional networks, or network edges, aggregated from the smaller parcel edges. Both the left and right hemisphere-preserved patient groups had widespread reductions in FC relative to matched controls, particularly for within-network edges. A case series analysis further uncovered subclusters of patients with distinctive edgewise changes relative to controls, illustrating individual postoperative connectivity profiles. The large-scale differences in networks of the preserved hemisphere potentially reflect plasticity in the service of maintained and/or retained cognitive function.
Collapse
Affiliation(s)
- Sophia Robert
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
- The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA15213
| | - Michael C. Granovetter
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
- The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA15213
- School of Medicine, University of Pittsburgh, Pittsburgh, PA15213
| | - Christina Patterson
- Department of Pediatrics, Division of Child Neurology, University of Pittsburgh, Pittsburgh, PA15213
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
- The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA15213
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| |
Collapse
|
9
|
Tanaka M, Vécsei L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024; 12:1083. [PMID: 38791045 PMCID: PMC11117868 DOI: 10.3390/biomedicines12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Welcome to Biomedicines' 10th Anniversary Special Issue, a journey through the human mind's labyrinth and complex neurological pathways [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
10
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
11
|
Tarchi P, Lanini MC, Frassineti L, Lanatà A. Real and Deepfake Face Recognition: An EEG Study on Cognitive and Emotive Implications. Brain Sci 2023; 13:1233. [PMID: 37759834 PMCID: PMC10526392 DOI: 10.3390/brainsci13091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
The human brain's role in face processing (FP) and decision making for social interactions depends on recognizing faces accurately. However, the prevalence of deepfakes, AI-generated images, poses challenges in discerning real from synthetic identities. This study investigated healthy individuals' cognitive and emotional engagement in a visual discrimination task involving real and deepfake human faces expressing positive, negative, or neutral emotions. Electroencephalographic (EEG) data were collected from 23 healthy participants using a 21-channel dry-EEG headset; power spectrum and event-related potential (ERP) analyses were performed. Results revealed statistically significant activations in specific brain areas depending on the authenticity and emotional content of the stimuli. Power spectrum analysis highlighted a right-hemisphere predominance in theta, alpha, high-beta, and gamma bands for real faces, while deepfakes mainly affected the frontal and occipital areas in the delta band. ERP analysis hinted at the possibility of discriminating between real and synthetic faces, as N250 (200-300 ms after stimulus onset) peak latency decreased when observing real faces in the right frontal (LF) and left temporo-occipital (LTO) areas, but also within emotions, as P100 (90-140 ms) peak amplitude was found higher in the right temporo-occipital (RTO) area for happy faces with respect to neutral and sad ones.
Collapse
Affiliation(s)
- Pietro Tarchi
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (P.T.); (M.C.L.); (L.F.)
| | - Maria Chiara Lanini
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (P.T.); (M.C.L.); (L.F.)
| | - Lorenzo Frassineti
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (P.T.); (M.C.L.); (L.F.)
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
| | - Antonio Lanatà
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (P.T.); (M.C.L.); (L.F.)
| |
Collapse
|
12
|
Klingner CM, Guntinas-Lichius O. Facial expression and emotion. Laryngorhinootologie 2023; 102:S115-S125. [PMID: 37130535 PMCID: PMC10171334 DOI: 10.1055/a-2003-5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human facial expressions are unique in their ability to express our emotions and communicate them to others. The mimic expression of basic emotions is very similar across different cultures and has also many features in common with other mammals. This suggests a common genetic origin of the association between facial expressions and emotion. However, recent studies also show cultural influences and differences. The recognition of emotions from facial expressions, as well as the process of expressing one's emotions facially, occurs within an extremely complex cerebral network. Due to the complexity of the cerebral processing system, there are a variety of neurological and psychiatric disorders that can significantly disrupt the coupling of facial expressions and emotions. Wearing masks also limits our ability to convey and recognize emotions through facial expressions. Through facial expressions, however, not only "real" emotions can be expressed, but also acted ones. Thus, facial expressions open up the possibility of faking socially desired expressions and also of consciously faking emotions. However, these pretenses are mostly imperfect and can be accompanied by short-term facial movements that indicate the emotions that are actually present (microexpressions). These microexpressions are of very short duration and often barely perceptible by humans, but they are the ideal application area for computer-aided analysis. This automatic identification of microexpressions has not only received scientific attention in recent years, but its use is also being tested in security-related areas. This article summarizes the current state of knowledge of facial expressions and emotions.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Germany
- Biomagnetic Center, Jena University Hospital, Germany
| | | |
Collapse
|