1
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
3
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
4
|
Hybrid Materials Based on Magnetic Iron Oxides with Benzothiazole Derivatives: A Plausible Potential Spectroscopy Probe. Int J Mol Sci 2021; 22:ijms22083980. [PMID: 33921510 PMCID: PMC8070218 DOI: 10.3390/ijms22083980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Rare diseases affect a small part of the population, and the most affected are children. Because of the low availability of patients for testing, the pharmaceutical industry cannot develop drugs for the diagnosis of many of these orphan diseases. In this sense, the use of benzothiazole compounds that are highly selective and can act as spectroscopy probes, especially the compound 2-(4'-aminophenyl)benzothiazole (ABT), has been highlighted. This article reports the design of potential contrast agents based on ABT and iron to develop a new material with an efficient mechanism to raise the relaxation rate, facilitating diagnosis. The ABT/δ-FeOOH hybrid material was prepared by grafting (N-(4'-aminophenyl) benzothiazole-2-bromoacetamide) on the surface of the iron oxyhydroxide particles. FTIR spectra confirmed the material formations of the hybrid material ABT/δ-FeOOH. SEM analysis checked the covering of nanoflakes' surfaces in relation to the morphology of the samples. The theoretical calculations test a better binding mode of compound with iron oxyhydroxide. Theoretical findings show the radical capture mechanism in the stabilization of this new material. In this context, Fe3+ ions are an electron acceptor from the organic phase.
Collapse
|
5
|
Bacterial Flagellum versus Carbon Nanotube: A Review Article on the Potential of Bacterial Flagellum as a Sustainable and Green Substance for the Synthesis of Nanotubes. SUSTAINABILITY 2020. [DOI: 10.3390/su13010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial flagella are complex multicomponent structures that help in cell locomotion. It is composed of three major structural components: the hook, the filament and basal body. The special mechanical properties of flagellar components make them useful for the applications in nanotechnology especially in nanotube formation. Carbon nanotubes (CNTs) are nanometer scale tube-shaped material and it is very useful in many applications. However, the production of CNTs is costly and detrimental to the environment as it pollutes the environment. Therefore, bacterial flagella have become a highly interesting research area especially in producing bacterial nanotubes that could replace CNTs. In this review article, we will discuss about bacterial flagellum and carbon nanotubes in the context of their types and applications. Then, we will focus and review on the characteristics of bacterial flagellum in comparison to carbon nanotubes and subsequently, the advantages of bacterial flagellum as nanotubes in comparison with carbon nanotubes.
Collapse
|
6
|
Samrot AV, Bhavya KS, Angalene JLA, Roshini S, Preethi R, Steffi S, Raji P, Kumar SS. Utilization of gum polysaccharide of Araucaria heterophylla and Azadirachta indica for encapsulation of cyfluthrin loaded super paramagnetic iron oxide nanoparticles for mosquito larvicidal activity. Int J Biol Macromol 2020; 153:1024-1034. [DOI: 10.1016/j.ijbiomac.2019.10.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022]
|