1
|
Espay AJ. From Europe to the World: EMA's Leadership in Alzheimer Disease Treatment. Am J Ther 2024; 31:e686-e688. [PMID: 39792495 DOI: 10.1097/mjt.0000000000001840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
2
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
3
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
4
|
Daly T. A philosophy of science approach to the amyloid hypothesis of Alzheimer's disease. Eur J Neurosci 2024; 60:4707-4722. [PMID: 39119857 DOI: 10.1111/ejn.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Disputes about the scientific validity of the amyloid-β hypothesis of Alzheimer's disease have been held since the early 1990s, with little constructive progress made between opposing sides despite recent therapeutic progress. Here, I argue that philosophy of science can improve the chance of constructive debate by giving researchers technical language to describe and assess scientific progress. To do so, I interpret the amyloid hypothesis using a modified version of the research programme concept from philosopher of science Imre Lakatos. I first outline the amyloid-β hypothesis and study critiques of its central place in Alzheimer's research. Then, I draw on the complexity of amyloid-β and Alzheimer's research to discuss the limits of using concepts from popular philosophers of science Karl Popper or Thomas Kuhn, before finally arguing that an adaptation of the research programme concept can foster constructive debates about the science of Alzheimer's and within it. I will argue that the amyloid-β hypothesis has contributed to significant progress in the Alzheimer's field based on what Lakatos called the "positive heuristic" (motivating the programme to test its predictions) and the "negative heuristic" (protecting the programme from refutation). I consider the amyloid research agenda to be progressive despite the fact that its claims about disease aetiology could be wrong.
Collapse
Affiliation(s)
- Timothy Daly
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Teixeira da Silva JA, Bornemann-Cimenti H, Daly T, Türp JC. Beyond disclaimers: the need for a curation-based model of PubMed. Curr Med Res Opin 2024:1-7. [PMID: 38700245 DOI: 10.1080/03007995.2024.2350612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
According to its own description, the biomedical meta-database PubMed exists "with the aim of improving health-both globally and personally." Unfortunately, PubMed contains an increasing amount of low-quality research that may detract from this goal. Currently, PubMed warns its users and protects itself from such problems with a disclaimer stating that the presence of any article, book, or document in PubMed does not imply an endorsement of, or concurrence with, its contents by the NLM, the National Institutes of Health (NIH), or the U.S. Federal Government. However, we are critical of a "disclaimer-only" stance and encourage PubMed to take further action against low-quality research being found and indexed in its database, and thus available for use. To address this problem, we offer two lines of reasoning to argue that PubMed should not function merely as a passive index of health-related research. Instead, we first argue that only trustworthy published research is able to further PubMed's goal of health improvement. Secondly, on the basis of surveys, we argue that researchers place a high level of trust in articles that are referenced in this meta-database. We cannot expect any one set of actors to ensure trustworthy content on PubMed, which requires collective responsibility among authors, peer reviewers, editors, and indexers alike. Instead, we propose a curation-based model that incorporates three mechanisms of collaborative content curation: open expert feedback on indexed content, journal auditing, and constant transparent reassessment of indexed entities.
Collapse
Affiliation(s)
| | - Helmar Bornemann-Cimenti
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Timothy Daly
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
| | - Jens C Türp
- Department of Oral Health & Medicine, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
7
|
Abstract
Maintaining diversity in drug development in research into Alzheimer's disease (AD) is necessary to avoid over-reliance on targeting AD neuropathology. Treatments that reduce or prevent the generation of oxidative stress, frequently cited for its causal role in the aging process and AD, could be useful in at-risk populations or diagnosed AD patients. However, in this review, it is argued that clinical research into antioxidants in AD could provide more useful feedback as to the therapeutic value of the oxidative stress theory of AD. Improving comparability between randomized controlled trials (RCTs) is vital from a waste-reduction and priority-setting point of view for AD clinical research. For as well as attempting to improve meaningful outcomes for patients, RCTs of antioxidants in AD should strive to maximize the extraction of clinically useful information and actionable feedback from trial outcomes. Solutions to maximize information flow from RCTs of antioxidants in AD are offered here in the form of checklist questions to improve ongoing and future trials centered around the following dimensions: adhesion to reporting guidelines like CONSORT, biomarker enrichment, simple tests of treatment, and innovative trial design.
Collapse
Affiliation(s)
- Timothy Daly
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
| |
Collapse
|
8
|
Daly T. If deprivation worsens dementia outcomes, stimulation should improve them. Curr Med Res Opin 2023; 39:1391-1394. [PMID: 37725088 DOI: 10.1080/03007995.2023.2260741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
It is still not known what causes Alzheimer's Disease (AD). In this period of uncertainty, an emerging literature on risk factors suggests that the concept of "stimulation" is a useful pragmatic tool both before and after diagnosis to improve cognitive health. Before diagnosis of AD, stimulation of the brain through education, exercise, and social stimulation provides fortification against later cognitive decline. After diagnosis, specific electrical stimulation of brain circuits may protect cognitive function, and non-specific stimulation through different kinds of environmental enrichment may help to compensate for cognitive decline. Pragmatic guidelines are offered here to maximise enabling stimulation (physical, cognitive, and social activity) and minimise disabling stimulation across the lifetime (e.g. stress, pollution, and poor diet). However, much deeper structural changes in society are needed to struggle against socioeconomic and environmental deprivation and the inaccessibility of education for women across the globe.
Collapse
Affiliation(s)
- Timothy Daly
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Daly T. Lecanemab: turning point, or status quo? An ethics perspective. Brain 2023; 146:e71-e72. [PMID: 36943307 DOI: 10.1093/brain/awad094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Timothy Daly
- Science Norms Democracy UMR 8011, Sorbonne Universite, 75005 Paris, France
- Bioethics Program, FLACSO Argentina, Buenos Aires, C1050 AAN, Argentina
| |
Collapse
|
10
|
Géraudie A, Riche M, Lestra T, Trotier A, Dupuis L, Mathon B, Carpentier A, Delatour B. Effects of Low-Intensity Pulsed Ultrasound-Induced Blood-Brain Barrier Opening in P301S Mice Modeling Alzheimer's Disease Tauopathies. Int J Mol Sci 2023; 24:12411. [PMID: 37569786 PMCID: PMC10419069 DOI: 10.3390/ijms241512411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. No treatments have led to clinically meaningful impacts. A major obstacle for peripherally administered therapeutics targeting the central nervous system is related to the blood-brain barrier (BBB). Ultrasounds associated with microbubbles have been shown to transiently and safely open the BBB. In AD mouse models, the sole BBB opening with no adjunct drugs may be sufficient to reduce lesions and mitigate cognitive decline. However, these therapeutic effects are for now mainly assessed in preclinical mouse models of amyloidosis and remain less documented in tau lesions. The aim of the present study was therefore to evaluate the effects of repeated BBB opening using low-intensity pulsed ultrasounds (LIPU) in tau transgenic P301S mice with two main readouts: tau-positive lesions and microglial cells. Our results show that LIPU-induced BBB opening does not decrease tau pathology and may even potentiate the accumulation of pathological tau in selected brain regions. In addition, LIPU-BBB opening in P301S mice strongly reduced microglia densities in brain parenchyma, suggesting an anti-inflammatory action. These results provide a baseline for future studies using LIPU-BBB opening, such as adjunct drug therapies, in animal models and in AD patients.
Collapse
Affiliation(s)
- Amandine Géraudie
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
| | - Maximilien Riche
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France;
- Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France
- Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Thaïs Lestra
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
| | - Alexandre Trotier
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
| | - Léo Dupuis
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265 Fontenay-Aux-Roses, France
- Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Bertrand Mathon
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France;
- Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France
- Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France;
- Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France
- Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Benoît Delatour
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France; (M.R.); (T.L.); (A.T.); (L.D.); (B.M.); (B.D.)
| |
Collapse
|
11
|
Espay AJ, McFarthing K. Alpha-synuclein and the Parkinson's disease drug pipeline. Parkinsonism Relat Disord 2023:105432. [PMID: 37244791 DOI: 10.1016/j.parkreldis.2023.105432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
The process of protein aggregation involves the transformation of soluble peptides into insoluble cross-beta amyloids. In Parkinson's disease (PD), soluble monomeric α-synuclein transforms into the amyloid state known as Lewy pathology. Monomeric (functional) α-synuclein depletes as the fraction of Lewy pathology increases. We examined the allocation of disease-modifying projects in the PD therapeutic pipeline classified based on whether they aimed to reduce directly or indirectly the insoluble or increase the soluble α-synuclein. A project was defined as a drug development program that may include more than one registered clinical trial, according to the Parkinson's Hope List, a database of therapies under development for PD. Of 67 projects, 46 aimed to reduce α-synuclein, 15 (22.4%) directly and 31 (46.3%) indirectly, amounting to 68.7% of all disease-modifying projects. No projects explicitly aimed to increase soluble α-synuclein levels. Altogether, α-synuclein is the target of more than two-thirds of the disease-modifying pipeline, with treatments aimed at reducing or preventing an increase in its insoluble fraction. As no treatments aim to restore soluble α-synuclein levels within a normal range, we propose rebalancing the therapeutic PD pipeline.
Collapse
Affiliation(s)
- Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|