1
|
Rossi M, Schaake S, Usnich T, Boehm J, Steffen N, Schell N, Krüger C, Gül‐Demirkale T, Bahr N, Kleinz T, Madoev H, Laabs B, Gan‐Or Z, Alcalay RN, Lohmann K, Klein C. Classification and Genotype-Phenotype Relationships of GBA1 Variants: MDSGene Systematic Review. Mov Disord 2025; 40:605-618. [PMID: 39927608 PMCID: PMC12006889 DOI: 10.1002/mds.30141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Depending on zygosity and the specific change, different variants in the GBA1 gene can cause Parkinson's disease (PD, PARK-GBA1) with reduced penetrance, act as genetic risk factors for PD or parkinsonism, and/or lead to Gaucher's disease (GD). This MDSGene systematic literature review covers 27,963 patients carrying GBA1 variants from 1082 publications with 794 variants, including 13,342 patients with PD or other forms of parkinsonism. It provides a comprehensive overview of demographic, clinical, and genetic findings from an ethnically diverse sample originating from 82 countries across five continents. The most frequent pathogenic or likely pathogenic variants were "N409S" (aka "N370S"; dominating among Jewish and Whites), and "L483P" (aka "L444P"; dominating among Asians and Hispanics), whereas the most common coding risk variants were "E365K" (E326K), and "T408M" (T369M) (both common among Whites). A novel finding is that early-onset PD patients were predominantly of Asian ethnicity, whereas late-onset PD patients were mainly of White ethnicity. Motor cardinal features were similar between PD patients and other forms of parkinsonism, whereas motor complications and non-motor symptoms were more frequently reported in PD patients carrying "severe" variants than in those with "risk" or "mild" variants. Cognitive decline was reported in most patients after surgical treatment, despite achieving a beneficial motor function response. Most GD patients developing PD harbored the "N409S" variant, were of Ashkenazi Jewish ethnicity, and showed a positive response to chronic levodopa treatment. With this review, we start to fill the gaps regarding genotype-phenotype correlations in GBA1 variant carriers, especially concerning PD. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Servicio de Movimientos Anormales, Departamento de NeurologíaFleniBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Susen Schaake
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Tatiana Usnich
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Nina Steffen
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Clara Krüger
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Tuğçe Gül‐Demirkale
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), School of MedicineKoç UniversityIstanbulTurkey
| | - Natascha Bahr
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Teresa Kleinz
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Harutyun Madoev
- Institute of Medical Biometry and StatisticsUniversity of LübeckLübeckGermany
| | - Björn‐Hergen Laabs
- Institute of Medical Biometry and StatisticsUniversity of LübeckLübeckGermany
| | - Ziv Gan‐Or
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Clinical Research Unit, The Neuro (Montreal Neurological Institute‐Hospital)McGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Roy N. Alcalay
- Division of Movement DisordersTel Aviv Sourasky Medical CenterTel AvivIsrael
- Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | |
Collapse
|
2
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
3
|
Kulcsarova K, Skorvanek M, Postuma RB, Berg D. Defining Parkinson's Disease: Past and Future. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S257-S271. [PMID: 38489197 PMCID: PMC11492139 DOI: 10.3233/jpd-230411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is the second most common still relentlessly progressive neurodegenerative disorder with a long period in which the pathophysiological process is already spreading but cardinal motor symptoms are not present. This review outlines the major developments and milestones in our understanding of PD that have shaped the way we define this disorder. Past criteria and definitions of PD have been based on clinical motor manifestations enabling diagnosis of the disease only in later symptomatic stages. Nevertheless, with advancing knowledge of disease pathophysiology and aim of early disease detection, a major shift of the diagnostic paradigm is being advocated towards a biological definition similar to other neurodegenerative disorders including Alzheimer's disease and Huntington's disease, with the ultimate goal of an earlier, disease course modifying therapy. We summarize the major pillars of this possible approach including in vivo detection of neuronal α-synuclein aggregation, neurodegeneration and genetics and outline their possible application in different contexts of use in the frame of biological PD definition.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Matej Skorvanek
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Ronald B. Postuma
- Department of Neurology, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|