1
|
Mulroy E, Erro R, Bhatia KP, Hallett M. Refining the clinical diagnosis of Parkinson's disease. Parkinsonism Relat Disord 2024; 122:106041. [PMID: 38360507 PMCID: PMC11069446 DOI: 10.1016/j.parkreldis.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Our ability to define, understand, and classify Parkinson's disease (PD) has undergone significant changes since the disorder was first described in 1817. Clinical features and neuropathologic signatures can now be supplemented by in-vivo interrogation of genetic and biological substrates of disease, offering great opportunity for further refining the diagnosis of PD. In this mini-review, we discuss the historical perspectives which shaped our thinking surrounding the definition and diagnosis of PD. We highlight the clinical, genetic, pathologic and biologic diversity which underpins the condition, and proceed to discuss how recent developments in our ability to define biologic and pathologic substrates of disease might impact PD definition, diagnosis, individualised prognostication, and personalised clinical care. We argue that Parkinson's 'disease', as currently diagnosed in the clinic, is actually a syndrome. It is the outward manifestation of any array of potential dysfunctional biologic processes, neuropathological changes, and disease aetiologies, which culminate in common outward clinical features which we term PD; each person has their own unique disease, which we can now define with increasing precision. This is an exciting time in PD research and clinical care. Our ability to refine the clinical diagnosis of PD, incorporating in-vivo assessments of disease biology, neuropathology, and neurogenetics may well herald the era of biologically-based, precision medicine approaches PD management. With this however comes a number of challenges, including how to integrate these technologies into clinical practice in a way which is acceptable to patients, promotes meaningful changes to care, and minimises health economic impact.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, (SA), Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Jenkins D. How do stochastic processes and genetic threshold effects explain incomplete penetrance and inform causal disease mechanisms? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230045. [PMID: 38432317 PMCID: PMC10909503 DOI: 10.1098/rstb.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 03/05/2024] Open
Abstract
Incomplete penetrance is the rule rather than the exception in Mendelian disease. In syndromic monogenic disorders, phenotypic variability can be viewed as the combination of incomplete penetrance for each of multiple independent clinical features. Within genetically identical individuals, such as isogenic model organisms, stochastic variation at molecular and cellular levels is the primary cause of incomplete penetrance according to a genetic threshold model. By defining specific probability distributions of causal biological readouts and genetic liability values, stochasticity and incomplete penetrance provide information about threshold values in biological systems. Ascertainment of threshold values has been achieved by simultaneous scoring of relatively simple phenotypes and quantitation of molecular readouts at the level of single cells. However, this is much more challenging for complex morphological phenotypes using experimental and reductionist approaches alone, where cause and effect are separated temporally and across multiple biological modes and scales. Here I consider how causal inference, which integrates observational data with high confidence causal models, might be used to quantify the relative contribution of different sources of stochastic variation to phenotypic diversity. Collectively, these approaches could inform disease mechanisms, improve predictions of clinical outcomes and prioritize gene therapy targets across modes and scales of gene function. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Dagan Jenkins
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
3
|
Marras C, Fereshtehnejad SM, Berg D, Bohnen NI, Dujardin K, Erro R, Espay AJ, Halliday G, Van Hilten JJ, Hu MT, Jeon B, Klein C, Leentjens AFG, Mollenhauer B, Postuma RB, Rodríguez-Violante M, Simuni T, Weintraub D, Lawton M, Mestre TA. Transitioning from Subtyping to Precision Medicine in Parkinson's Disease: A Purpose-Driven Approach. Mov Disord 2024; 39:462-471. [PMID: 38243775 DOI: 10.1002/mds.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The International Parkinson and Movement Disorder Society (MDS) created a task force (TF) to provide a critical overview of the Parkinson's disease (PD) subtyping field and develop a guidance on future research in PD subtypes. Based on a literature review, we previously concluded that PD subtyping requires an ultimate alignment with principles of precision medicine, and consequently novel approaches were needed to describe heterogeneity at the individual patient level. In this manuscript, we present a novel purpose-driven framework for subtype research as a guidance to clinicians and researchers when proposing to develop, evaluate, or use PD subtypes. Using a formal consensus methodology, we determined that the key purposes of PD subtyping are: (1) to predict disease progression, for both the development of therapies (use in clinical trials) and prognosis counseling, (2) to predict response to treatments, and (3) to identify therapeutic targets for disease modification. For each purpose, we describe the desired product and the research required for its development. Given the current state of knowledge and data resources, we see purpose-driven subtyping as a pragmatic and necessary step on the way to precision medicine. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Nicolaas I Bohnen
- Departments of Radiology & Neurology, University of Michigan, University of Michigan Udall Center, Ann Arbor, Michigan, USA
| | - Kathy Dujardin
- Center of Excellence for Parkinson's Disease, CHU Lille, Univ Lille, Inserm, Lille Neuroscience & Cognition, Lille, France
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Glenda Halliday
- Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jacobus J Van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, Oxford University and John Radcliffe Hospital, West Wing, Neurology Department, Level 3, Oxford, United Kingdom
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Department of Neurology, University Medical Center Goettingen, Kassel, Germany
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania; Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tiago A Mestre
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Parkinson's Disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa Brain and Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|