1
|
Abaidullah N, Muhammad K, Waheed Y. Delving Into Nanoparticle Systems for Enhanced Drug Delivery Technologies. AAPS PharmSciTech 2025; 26:74. [PMID: 40038143 DOI: 10.1208/s12249-025-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Nanotechnology, based on the utilization of nanoparticles, has revolutionized drug delivery techniques, offering groundbreaking methods for managing and diagnosing intricate ailments over the past four decades. This article aims to underscore how the use of these particles has been used to treat previously incurable diseases such as cancer, Alzheimer's, and Parkinson's disease. Recently, the integration of diagnostic imaging and targeted therapy using theranostic nanoparticles has improved cancer treatment precision. Moreover, exosome-based drug delivery has demonstrated high in vivo biocompatibility and antigen-carrying ability during vaccine development. The unique properties of these tiny particles enable their transport to specific locations inaccessible to large drug molecules. The development of these nanodrugs by either encapsulation or adsorption of drugs on particles has allowed the loading of both hydrophilic and hydrophobic drugs. Innovative engineering approaches have enabled the engineering of shear-sensitive nanoparticles for site-targeted drug release, which eliminates the requirement for frequent doses, which is common in conventional drug delivery. Factors such as size, shape as well as surface modification are considered during the top-down and bottom-up approaches for engineering nanoparticle-based systems. However, issues related to scaling up manufacturing, long-term safety, and regulatory approval for these techniques must be resolved. The use of these drug delivery systems offers many therapeutic advantages. This article examines the application of these systems across various medical domains including cancer treatment, infectious diseases, cardiovascular disorders, central nervous system ailments, and ophthalmic conditions. This fusion of nanotechnology with drug delivery has the potential to elevate healthcare standards in the future by introducing innovative frameworks for revolutionizing therapeutic practices.
Collapse
Affiliation(s)
- Nimra Abaidullah
- Department of Industrial Biotechnology, Atta-Ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 4400, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, 15551, Al Ain, UAE
| | - Yasir Waheed
- NUST School of Health Sciences, National University of Sciences and Technology (NUST), H-12 Sector, Islamabad, 44000, Pakistan.
- Near East University, Operational Research Center in Healthcare, TRNC Mersin 10, Nicosia, 99138, Turkey.
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opin Drug Deliv 2024; 21:187-210. [PMID: 38243810 DOI: 10.1080/17425247.2024.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Amphotericin B (AmB), a promising antifungal and antileishmanial drug, acts on the membrane of microorganisms. The clinical use of AmB is limited due to issues associated with its delivery including poor solubility and bioavailability, instability in acidic media, poor intestinal permeability, dose and aggregation state dependent toxicity, parenteral administration, and requirement of cold chain for transport and storage, etc. AREAS COVERED Scientists have formulated and explored various covalent conjugates of AmB to reduce its toxicity with increase in solubility, oral bioavailability, and payload or loading of AmB by using various polymers, lipids, carbon-based nanocarriers, metallic nanoparticles, and vesicular carriers, etc. In this article, we have reviewed various conjugates of AmB with polymers and nanomaterials explored for its delivery to give a deep insight regarding further exploration in future. EXPERT OPINION Covalent conjugates of AmB have been investigated by scientists, and preliminary in vitro and animal investigations have given successful results, which are required to be validated further with systematic investigation on safety and therapeutic efficacy in animals followed by clinical trials.
Collapse
Affiliation(s)
- Vineet Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
3
|
Bayles CE, Hale DE, Konieczny A, Anderson VD, Richardson CR, Brown KV, Nguyen JT, Hecht J, Schwartz N, Kharel MK, Amissah F, Dowling TC, Nybo SE. Upcycling the anthracyclines: New mechanisms of action, toxicology, and pharmacology. Toxicol Appl Pharmacol 2023; 459:116362. [PMID: 36592899 PMCID: PMC9840691 DOI: 10.1016/j.taap.2022.116362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The anthracyclines are a family of natural products isolated from soil bacteria with over 2000 chemical representatives. Since their discovery seventy years ago by Waksman and co-workers, anthracyclines have become one of the best-characterized anticancer chemotherapies in clinical use. The anthracyclines exhibit broad-spectrum antineoplastic activity for the treatment of a variety of solid and liquid tumors, however, their clinical use is limited by their dose-limiting cardiotoxicity. In this review article, we discuss the toxicity of the anthracyclines on several organ systems, including new insights into doxorubicin-induced cardiotoxicity. In addition, we discuss new medicinal chemistry developments in the biosynthesis of new anthracycline analogs and the synthesis of new anthracycline analogs with diminished cardiotoxicity. Lastly, we review new studies that describe the repurposing of the anthracyclines, or "upcycling" of the anthracyclines, as anti-infective agents, or drugs for niche indications. Altogether, the anthracyclines remain a mainstay in the clinic with a potential new "lease on life" due to deeper insight into the mechanism underlying their cardiotoxicity and new developments into potential new clinical indications for their use. Keywords: Anthracycline, chemotherapy, toxicology, medicinal chemistry, biosynthesis.
Collapse
Affiliation(s)
- Claudine E Bayles
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Danielle E Hale
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Ali Konieczny
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Veronica D Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Claire R Richardson
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Katelyn V Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Jennifer T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Jacob Hecht
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Nora Schwartz
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Madan K Kharel
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Felix Amissah
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Thomas C Dowling
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - S Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA.
| |
Collapse
|