1
|
Sezer I, Sacchet MD. Advanced and long-term meditation and the autonomic nervous system: A review and synthesis. Neurosci Biobehav Rev 2025; 173:106141. [PMID: 40204160 DOI: 10.1016/j.neubiorev.2025.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/07/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Meditation has become prominent in both clinical and non-clinical applications for its effects on psychological and physical well-being. Long-term meditators, who have dedicated extensive time to their practice, present a unique opportunity to explore the effects of prolonged meditation training on the autonomic nervous system. Research has reported concomitant activation of both sympathetic (aroused) and parasympathetic (relaxed) branches of the autonomic nervous system during some forms of meditation, leading to the term 'relaxed alertness.' However, findings are not consistent, with reports of both sympathetic and parasympathetic activation, sympathetic-only, parasympathetic-only, or temporally variable activations, depending on several factors. This review synthesizes these heterogeneous and seemingly inconsistent results in relation to three explanatory factors: (1) specific classification of style or type of meditation; (2) specific definition of the level of expertise of the meditators; and (3) intra-individual variations within a given meditation practice. When these factors are considered, convergent and meaningful patterns emerge, allowing for a shift from the broad notion of 'long-term' meditation to a more precise characterization of 'advanced' meditation, highlighting skills, states, and stages of mastery developed over time. Our synthesis is particularly useful for understanding both long-term and advanced meditation, as it reveals specific heart rate variability patterns, including very low and low-frequency spectral power peaks, along with cardiac and respiratory coupling. Better characterization of the role of the autonomic nervous system in the context of advanced meditation promises to inform improved meditation training, including training assisted by technology, toward more impactful outcomes.
Collapse
Affiliation(s)
- Idil Sezer
- FrontLab, INSERM U1127, Paris Brain Institute, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tort ABL, Laplagne DA, Draguhn A, Gonzalez J. Global coordination of brain activity by the breathing cycle. Nat Rev Neurosci 2025:10.1038/s41583-025-00920-7. [PMID: 40204908 DOI: 10.1038/s41583-025-00920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Neuronal activities that synchronize with the breathing rhythm have been found in humans and a host of mammalian species, not only in brain areas closely related to respiratory control or olfactory coding but also in areas linked to emotional and higher cognitive functions. In parallel, evidence is mounting for modulations of perception and action by the breathing cycle. In this Review, we discuss the extent to which brain activity locks to breathing across areas, levels of organization and brain states, and the physiological origins of this global synchrony. We describe how waves of sensory activity evoked by nasal airflow spread through brain circuits, synchronizing neuronal populations to the breathing cycle and modulating faster oscillations, cell assembly formation and cross-area communication, thereby providing a mechanistic link from breathing to neural coding, emotion and cognition. We argue that, through evolution, the breathing rhythm has come to shape network functions across species.
Collapse
Affiliation(s)
- Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Diego A Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Joaquin Gonzalez
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Neuroscience Institute and Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Ren Y, Xie L, Wang X, Zhang J. Characteristics of brain network after cardiopulmonary phase synchronization enhancement. Respir Physiol Neurobiol 2025; 333:104396. [PMID: 39814090 DOI: 10.1016/j.resp.2025.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The central neural mechanism plays an important role in cardiopulmonary coupling. How the brain stem affects the cardiopulmonary coupling is relatively clear, but there are few studies on the cerebral cortex activity of cardiopulmonary coupling. We aim to study the response of the cerebral cortex for cardiopulmonary phase synchronization enhancement. The method of brain network was used and Pearson correlation analysis performed on the global attributes and phase synchronization time (CRPST) in the spontaneous, 2/2 and 4/4 breathing modes. Furthermore, calculated the phase lag index (PLI) among 21 lead EEG signals, and then analyzed the correlation between PLI and the parameters of cardiovascular and respiratory systems. Our results show that the global brain network characteristic parameters are significantly different in the three breath modes in the α (8-14 Hz) band. The global efficiency and feature path length are significantly positively correlated with the phase synchronization and PLI indexes are widely related to CRPST and respiratory depth in the spontaneous breathing mode, while the brain network parameters and PLI indexes are not correlated with CRPST and PLI mainly positively correlated with respiratory rate in the controlled breathing modes. The differences of brain networks in the three modes are mainly caused by the physiological factors of cardiopulmonary coupling. These show that enhanced cardiopulmonary phase synchronization with controlled breathing based on heartbeat has a significant effect on the cardiopulmonary system and maybe provide some ideas for regulating cardiopulmonary function in the future.
Collapse
Affiliation(s)
- Yumiao Ren
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, China
| | - Lin Xie
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Doğanyiğit Z, Akyüz E, Yılmaz S, Taheri S, Okan A, Başaran KE, Uçar S, Güvenilir E, Yılmaz Şükranlı Z, Bor TB. Respiratory surveillance and inward rectifier potassium channel expression in lung tissue within an experimental epilepsy model. Eur J Pharmacol 2025; 991:177288. [PMID: 39864576 DOI: 10.1016/j.ejphar.2025.177288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Epilepsy is characterized by neuronal discharges that occur as a result of disruption of the excitatory and inhibitory balance of the brain due to functional and structural changes. It has been shown in the literature that this neurological disorder may be related to the expression of ion channels. Any defect in the function or expression mechanism of these channels can lead to various neuronal disorders such as epilepsy. Epileptic seizures occur as a result of the accumulation of biological disorders in the circulatory, respiratory and nervous systems. In this study, we aimed to examine the changes in the expression of inward-directing potassium channels (Kir 3.1 and 6.2) in lung tissue and respiratory functions, considering that it will contribute to the elucidation of the mechanisms of sudden deaths thought to be caused by cardiorespiratory complications in epilepsy. In the study, 48 adult male Wistar albino rats weighing 250-300 g were used in the study. During the research process, respiratory function tests were performed on epileptic rats induced with pentylenetetrazol (PTZ) firing model, and then histopathological changes in lung and hippocampus tissues, and expression levels of the Kir (3.1 and 6.2) channels were evaluated by immunohistochemistry, qRT-PCR and Western blot analysis. Memantine and tertiapin-Q have been shown to protect epileptic groups from histopathological harm induced by PTZ application and also reduce HIF-1α, Kir 3.1 and Kir 6.2 expression. The findings imply that memantine and tertiapin-Q would be suitable options for treating epilepsy patients.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey.
| | - Enes Akyüz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul, 34468, Turkey
| | - Seher Yılmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Aslı Okan
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Sümeyye Uçar
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Ecma Güvenilir
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Zeynep Yılmaz Şükranlı
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Taha Berkay Bor
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| |
Collapse
|
5
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Susman ES, Weisz JR, McLaughlin KA, Coulombe P, Evans SC, Thomassin K. Is respiratory sinus arrhythmia a modifiable index of symptom change in cognitive behavioral therapy for youth? A pooled-data analysis of a randomized trial. Psychother Res 2025; 35:337-351. [PMID: 38285175 PMCID: PMC11284247 DOI: 10.1080/10503307.2024.2308149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVE We evaluated whether respiratory sinus arrhythmia (RSA) reactivity and resting RSA-physiological markers reflecting the increase in heart rate with inspiration and decrease during expiration related to parasympathetic influence on the heart-are modifiable and predict symptom change during youth psychotherapy. Methods: Diverse youth (N = 158; ages 7-15; 48.1% female) received the Modular Approach to Therapy for Children and completed pre-treatment (pre), post-treatment (post), and 18-months postbaseline (18Mo) assessments. We measured resting RSA, RSA reactivity during stress induction, and psychopathology symptoms. Results: Pre-to-post and pre-to-18Mo, reactivity decreased, and resting RSA increased. Changes in reactivity and resting RSA, separately, did not predict reduced psychopathology. Yet, decreased reactivity combined with increased resting RSA predicted reduced psychopathology over time, suggesting that observed RSA changes were beneficial for some. Higher dosage of a module utilizing slow-breathing, muscle-relaxation, and imagery predicted greater pre-to-18Mo changes in reactivity and resting RSA, whereas a similar module with less emphasis on slow-breathing did not. Conclusions: Findings raise the possibility that youth reactivity and resting RSA could be modifiable during cognitive behavioral therapy and contribute to the amelioration of psychopathology. More studies are needed to determine whether resting RSA and RSA reactivity are modifiable indices of symptom change in slow-breathing practices and psychotherapy. CLINICALTRIALS.GOV IDENTIFIER NCT03153904, registered May 15, 2017.
Collapse
Affiliation(s)
- Eli S. Susman
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94704
| | - John R. Weisz
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138
| | - Katie A. McLaughlin
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138
| | | | - Spencer C. Evans
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Coral Gables, FL 33146 USA
| | - Kristel Thomassin
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1
| |
Collapse
|
7
|
Kandimalla M, Lim S, Thakkar J, Dewan S, Kang D, In MH, Jo HJ, Jang DP, Nedelska Z, Lapid MI, Shu Y, Cheon-Pyung, Cogswell PM, Lowe VJ, Lee J, Min HK. Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal. Neuroimage 2025; 306:121000. [PMID: 39753161 DOI: 10.1016/j.neuroimage.2024.121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity. In this review, we explore the role of cardiorespiratory dynamics-such as heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and changes in blood flow, oxygenation, and carbon dioxide levels-embedded within fMRI signals. These physiological signals reflect critical aspects of neurovascular coupling and are influenced by factors such as physiological stress, breathing patterns, and age-related changes. We also discuss the complexities of distinguishing these signals from neuronal activity in fMRI data, given their significant contribution to signal variability and interactions with cerebrospinal fluid (CSF). Recognizing the influence of these cardiorespiratory dynamics is crucial for improving the interpretation of fMRI data, shedding light on heart-brain and respiratory-brain connections, and enhancing our understanding of circulation, oxygen delivery, and waste elimination within the brain.
Collapse
Affiliation(s)
| | - Seokbeen Lim
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jay Thakkar
- Department of Radiology, Jefferson Health, Philadelphia, PA, USA
| | - Sannidhi Dewan
- Department of Radiology, Jefferson Health, Philadelphia, PA, USA
| | - Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Hang Joon Jo
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Zuzana Nedelska
- Department of Neurology, Charles University, Prague, Czech Republic
| | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Cheon-Pyung
- Seokmun Hoheup Center, Suwon, Republic of Korea
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Toor RUAS, Burke PGR, Dempsey B, Sun QJ, Hildreth CM, Phillips JK, McMullan S. Role of the Kölliker-Fuse/parabrachial complex in the generation of postinspiratory vagal and sympathetic nerve activities and their recruitment by hypoxemic stimuli in the rat. J Neurophysiol 2024; 132:1496-1506. [PMID: 39356076 DOI: 10.1152/jn.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
In the rat, the activity of laryngeal adductor muscles, the crural diaphragm, and sympathetic vasomotor neurons is entrained to the postinspiratory (post-I) phase of the respiratory cycle, a mechanism thought to enhance cardiorespiratory efficiency. The identity of the central neurons responsible for transmitting respiratory activity to these outputs remains unresolved. Here we explore the contribution of the Kölliker-Fuse/parabrachial nuclei (KF-PBN) in the generation of post-I activity in vagal and sympathetic outputs under steady-state conditions and during acute hypoxemia, a condition that potently recruits post-I activity. In artificially ventilated, vagotomized, and urethane-anesthetized rats, bilateral KF-PBN inhibition by microinjection of the GABAA receptor agonist isoguvacine evoked stereotypical responses on respiratory pattern, characterized by a reduction in phrenic nerve burst amplitude, a modest lengthening of inspiratory time, and an increase in breath-to-breath variability, while post-I vagal nerve activity was abolished and post-I sympathetic nerve activity diminished. During acute hypoxemia, KF-PBN inhibition attenuated tachypneic responses and completely abolished post-I vagal activity while preserving respiratory-sympathetic coupling. Furthermore, KF-PBN inhibition disrupted the decline in respiratory frequency that normally follows resumption of oxygenation. These findings suggest that the KF-PBN is a critical hub for the distribution of post-I activities to vagal and sympathetic outputs and is an important contributor to the dynamic adjustments to respiratory patterns that occur in response to acute hypoxia. Although KF-PBN appears essential for post-I vagal activity, it only partially contributes to post-I sympathetic nerve activity, suggesting the contribution of multiple neural pathways to respiratory-sympathetic coupling.NEW & NOTEWORTHY Inhibition of neurons in the pontine Kölliker-Fuse/parabrachial complex (KF-PBN) differentially inhibited postinspiratory (post-I) activity in vagal and sympathetic outputs. The strong recruitment of post-I vagal activity that occurs in response to hypoxemia is selectively abolished by KF-PBN inhibition. This suggests that 1) post-I activity in vagal and sympathetic outputs may be generated by partially independent mechanisms and 2) neurons in the KF-PBN are a preeminent source of drive for the generation of eupneic post-I activity.
Collapse
Affiliation(s)
- Rahat Ul Ain Summan Toor
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Peter G R Burke
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Bowen Dempsey
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Qi-Jian Sun
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Cara M Hildreth
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Jacqueline K Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| |
Collapse
|
9
|
Petitjeans F, Longrois D, Ghignone M, Quintin L. Combining O 2 High Flow Nasal or Non-Invasive Ventilation with Cooperative Sedation to Avoid Intubation in Early Diffuse Severe Respiratory Distress Syndrome, Especially in Immunocompromised or COVID Patients? J Crit Care Med (Targu Mures) 2024; 10:291-315. [PMID: 39916864 PMCID: PMC11799322 DOI: 10.2478/jccm-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/01/2024] [Indexed: 02/09/2025] Open
Abstract
This overview addresses the pathophysiology of the acute respiratory distress syndrome (ARDS; conventional vs. COVID), the use of oxygen high flow (HFN) vs. noninvasive ventilation (NIV; conventional vs. helmet) and a multi-modal approach to avoid endotracheal intubation ("intubation"): low normal temperature, cooperative sedation, normalized systemic and microcirculation, anti-inflammation, reduced lung water, upright position, lowered intra-abdominal pressure. Increased ventilatory muscle activity ("respiratory drive") is observed in early ARDS, at variance with ventilatory fatigue observed in decompensated chronic obstructive pulmonary disease (COPD). This increased drive leads to impending then overt ventilatory failure. Therefore, muscle relaxation presents little rationale and should be replaced by lowering the excessive respiratory drive, increased work of breathing, continued or increased labored breathing, self-induced lung injury (SILI), i.e. preserving spontaneous breathing. As CMV is a lifesaver in the setting of failure but does not heal the lung, side-effects of intubation, controlled mechanical ventilation (CMV), paralysis and deep sedation are to be avoided. Additionally, critical care resources shortage requires practice changes. Therefore, NIV should be routine when addressing immune-compromised patients. The SARS-CoV2 pandemics extended this approach to most patients, which are immune-compromised: elderly, obese, diabetic, etc. The early COVID is a pulmonary vascular endothelial inflammatory disease requiring lower positive-end-expiratory pressure than the typical pulmonary alveolar epithelial inflammatory diffuse ARDS. This leads one to reassess a) the technique of NIV b) the sedation regimen facilitating continuous and extended NIV to avoid intubation. Autonomic, circulatory, respiratory, ventilatory physiology is hierarchized under HFN/NIV and cooperative sedation (dexmedetomidine, clonidine). A prospective randomized pilot trial, then a larger trial are required to ascertain our working hypotheses.
Collapse
Affiliation(s)
- Fabrice Petitjeans
- Department of Anesthesia-Critical Care, Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| | - Dan Longrois
- Bichat-Claude Bernard and Louis Mourier Hospitals, Assistance Publique-Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Marco Ghignone
- Department of Anesthesia-Critical Care, JF Kennedy North Hospital, W Palm Beach, Fl, USA
| | - Luc Quintin
- Department of Anesthesia-Critical Care, Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|
10
|
Zhu Y, Deng T, Ma L, Sun L, Hao Y, Yu H, Yuan F, Tian Y, Wang S. Acid-sensing ion channel 1 in nucleus tractus solitarii neurons contributes to the enhanced CO 2-stimulated cardiorespiratory effect in spontaneously hypertensive rats. Life Sci 2024; 351:122853. [PMID: 38889841 DOI: 10.1016/j.lfs.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
AIMS Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.
Collapse
Affiliation(s)
- Yufang Zhu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lan Ma
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lu Sun
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang 050017, China
| | - Yanming Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| |
Collapse
|
11
|
Plunkett MJ, Holwerda S, Young BE, Fadel PJ, Fisher JP. Respiratory modulation of sympathetic transduction to blood pressure in health and type 2 diabetes. J Physiol 2024; 602:3909-3927. [PMID: 39073892 PMCID: PMC11326975 DOI: 10.1113/jp286627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Type 2 diabetes (T2D) is often accompanied by hypertension, exaggerated blood pressure (BP) responses to sympatho-excitatory stressors, and raised cardiovascular disease risk. Appropriate respiratory-sympathetic coupling and sympathetic transduction to BP are important for short- and longer-term BP control. We tested the hypotheses that respiratory modulation of muscle sympathetic nerve activity (MSNA) and its transduction to BP would be impaired in T2D and associated with higher BP and respiratory-coupled BP variability. Resting MSNA, respiration and beat-to-beat BP were recorded in 20 T2D (49.1 ± 7.4 years; mean ± SD) and 13 healthy control (46.3 ± 9.4 years) participants. MSNA and the transduction of sympathetic bursts (signal-averaging) to mean arterial pressure (MAP) were compared at low and high lung volume phases. The peak MAP response following a sympathetic burst was lower during the high lung volume than low lung volume phase in controls (P = 0.005), whereas it was unchanged with phase in T2D participants (P = 0.522). Respiratory modulation of MSNA was impaired in T2D participants, who had an attenuated reduction in burst incidence from low to the high lung volume phase, versus controls (27.8 ± 38.4% vs. 49.4 ± 24.6%, respectively; P = 0.043). The T2D participants were grouped into unimpaired respiratory modulators (burst incidence modulation median or above) or impaired respiratory modulators (below median). Impaired modulators had higher systolic BP (133 ± 14 vs. 121 ± 11 mmHg, P = 0.046), greater Traube-Hering wave amplitudes (6.3 ± 2.4 vs. 4.6 ± 1.1 mmHg; P = 0.028) and higher BP variability (MAP average real variability, 2.0 ± 0.7 vs. 1.4 ± 0.3, P = 0.033). Respiratory modulation of MSNA and sympathetic transduction to BP are altered in T2D patients and may contribute to their increased hypertension and cardiovascular risk. KEY POINTS: Respiratory-sympathetic coupling and sympathetic transduction to blood pressure (BP) contribute to short- and longer-term BP control. Our understanding of these processes in health and type 2 diabetes (T2D), a condition with high prevalence of hypertension and cardiovascular risk, is incomplete. We found that respiration and sympathetic transduction to BP are coupled in healthy individuals. The mean arterial pressure response to a sympathetic burst was reduced during the high lung volume compared to the low lung volume phase. This coupling was absent in T2D. Respiratory modulation of muscle sympathetic nerve activity (MSNA) is impaired in T2D, with a blunted reduction of MSNA observed during the high lung volume phase. T2D patients with impaired respiratory MSNA modulation had augmented systolic BP, respiratory-related BP excursions (Traube-Hering waves) and BP variability. Abnormal respiratory modulation of MSNA and sympathetic transduction to BP in T2D may contribute to altered blood pressure control and cardiovascular risk in this population.
Collapse
Affiliation(s)
- Michael J Plunkett
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Seth Holwerda
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin E Young
- Department of Kinesiology, Health Promotion and Recreation, College of Education, The University of North Texas, Denton, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - James P Fisher
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Mahmoud A, Tarhuni M, Beilani T, Ismail-Sayed I, Pelidis M. Atrial Myxoma in a Patient With Chronic Obstructive Pulmonary Disease (COPD): Unmasking Overlapping Symptomatology. Cureus 2024; 16:e55974. [PMID: 38601400 PMCID: PMC11006435 DOI: 10.7759/cureus.55974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
Atrial myxoma, though the most common primary cardiac tumor, often presents with nonspecific symptoms that can obscure its diagnosis. This case report details an unusual presentation of dyspnea on exertion (DOE) in a patient initially considered to have chronic obstructive pulmonary disease (COPD), a common pulmonary etiology of DOE. The diagnostic journey underscores the critical importance of considering atrial myxoma in patients with DOE, especially when symptoms are not fully explained by apparent pulmonary conditions. Our findings highlight the necessity of a comprehensive diagnostic approach, including the early use of resting transthoracic echocardiogram, to unveil less common causes like atrial myxoma. This case reinforces the pivotal role of considering alternative diagnoses in complex presentations of DOE, thereby guiding more accurate and tailored patient management.
Collapse
Affiliation(s)
- Anas Mahmoud
- Internal Medicine, St. Joseph's University Medical Center, Paterson, USA
| | - Mawada Tarhuni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tala Beilani
- Oncology, Kansas City University, Kansas City, USA
| | | | - Michael Pelidis
- Internal Medicine, St. Joseph's University Medical Center, Paterson, USA
| |
Collapse
|
13
|
Hashizume NS, Kitajima Y, Ide R, Nakamura E, Saiki C. Respiratory sinus arrhythmia in spontaneously breathing, unanesthetized newborn and adult Wistar rats. Respir Physiol Neurobiol 2024; 321:104207. [PMID: 38160896 DOI: 10.1016/j.resp.2023.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
We examined respiratory sinus arrhythmia (RSA) and possible interaction with respiratory frequency (fR) and heart rate (HR) in spontaneously breathing, unanesthetized newborn Wistar rats (2- to 5-day-old; n = 54) and the adult rats (8-week-old; n = 34). Instantaneous heart rate (inst-HR) was calculated as the reciprocal of the inter-beat-interval. For each breath, RSA was determined as the difference between the maximum and minimum inst-HR value. The absolute RSA or RSA% (RSA per HR) were calculated as the average RSA of 10 consecutive breaths. RSA (or RSA%) in the newborn rats was significantly lower than that in the adult rats. Correlation coefficient between RSA (or RSA%) and 1/fR or HR/fR, but not HR, was significant in newborn rats, whereas only that between RSA (or RSA%) and HR was significant in adult rats. The power spectrum density of heartbeat fluctuation was detectable in both age groups. The present findings suggest that RSA exists and could be influenced by fR, rather than HR, in newborn rats.
Collapse
Affiliation(s)
- Nana Sato Hashizume
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | - Yoichiro Kitajima
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Ryoji Ide
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Eishi Nakamura
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Chikako Saiki
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
14
|
Theotokatos G, Escorpizo R, Angelopoulos TJ, Chrysagis NK, Venieri A, Bickenbach J, Karteroliotis K, Grammatopoulou E, Skordilis E. The Sociodemographic Factors Related to Disability of Applicants of Welfare Benefits in Greece: A Cross-Sectional Survey Based on the World Health Organization Disability Assessment Schedule (WHODAS) 2.0. Cureus 2024; 16:e55614. [PMID: 38586637 PMCID: PMC10995654 DOI: 10.7759/cureus.55614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION The aim of the present study was to report on the prevalence of disability and its association with sociodemographic factors among welfare benefit applicants in Greece. The study also compared the disability scores between different health conditions using the WHODAS 2.0 (12-item version), a biopsychosocial-model-based measure. METHODS The Greek WHODAS 2.0, 12-item version, was administered by interview. A three-member medical committee assessed the medical records of the applicants and assigned a disability percentage based on the biomedical measure of disability percentage determination (Barema scale). RESULTS The majority of the participants were female (56.65%). Certain health conditions were presented more frequently among welfare benefit applicants (mental health disorders and neoplasms). The domains with the highest rate of difficulty were the "participation" and "life activities" domains. Significant differences were found between WHODAS 2.0 and Barema scores for all eight different health condition categories. The factorial ANOVA (8x2) showed a significant interaction effect between health condition category and gender with respect to the WHODAS 2.0 score (F = 19.033, p <.001, η2 = 0.13). The WHODAS 2.0 score was negatively correlated to gender, years of studies, and marital status and positively correlated to age, working status, and the Barema score. The results revealed that male participants with a partner who were younger, had more studies, were actively working, and had a lower Barema score would have lower WHODAS scores. CONCLUSION Sociodemographic characteristics of welfare benefit applicants are associated with disability levels based on WHODAS 2.0. Certain health conditions, like mental health or neuromusculoskeletal conditions, are associated with higher disability scores. There are differences between the biopsychosocial and the biomedical approaches to disability assessment. The implementation of WHODAS 2.0 may contribute to a better understanding of the lived experience of patients and is a feasible and efficient tool. Combining biomedical and biopsychosocial approaches may enhance the procedures of disability assessment and help in the development of policies that support people with disabilities.
Collapse
Affiliation(s)
- Georgios Theotokatos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, GRC
| | - Reuben Escorpizo
- Employment and Participation Unit, Swiss Paraplegic Research, Nottwil, CHE
- Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, USA
| | - Theodore J Angelopoulos
- Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, USA
| | - Nikolaos K Chrysagis
- Laboratory of Advanced Physiotherapy (LAdPhys) Physiotherapy, School of Health and Care Sciences, University of West Attica (UNIWA), Athens, GRC
| | - Aikaterini Venieri
- Sports Excellence, 1st Orthopedics Department, School of Health Sciences, National and Kapodistrian University of Athens, Athens, GRC
| | - Jerome Bickenbach
- Schweizer Paraplegiker Forschung (SPF), Swiss Paraplegic Research, Nottwil, CHE
- University of Lucerne, Faculty of Health Sciences and Medicine, Lucerne, CHE
| | | | - Eirini Grammatopoulou
- Laboratory of Advanced Physiotherapy (LAdPhys) Physiotherapy, School of Health and Care Sciences, University of West Attica (UNIWA), Athens, GRC
| | - Emmanouil Skordilis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
15
|
Vitazkova D, Foltan E, Kosnacova H, Micjan M, Donoval M, Kuzma A, Kopani M, Vavrinsky E. Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies. BIOSENSORS 2024; 14:90. [PMID: 38392009 PMCID: PMC10886711 DOI: 10.3390/bios14020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones.
Collapse
Affiliation(s)
- Diana Vitazkova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Erik Foltan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Helena Kosnacova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
| | - Michal Micjan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Kopani
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| | - Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| |
Collapse
|
16
|
Watso JC, Cuba JN, Boutwell SL, Moss JE, Bowerfind AK, Fernandez IM, Cassette JM, May AM, Kirk KF. Acute nasal breathing lowers diastolic blood pressure and increases parasympathetic contributions to heart rate variability in young adults. Am J Physiol Regul Integr Comp Physiol 2023; 325:R797-R808. [PMID: 37867476 PMCID: PMC11178300 DOI: 10.1152/ajpregu.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
There is growing interest in how breathing pace, pattern, and training (e.g., device-guided or -resisted breathing) affect cardiovascular health. It is unknown whether the route of breathing (nasal vs. oral) affects prognostic cardiovascular variables. Because nasal breathing can improve other physiological variables (e.g., airway dilation), we hypothesized that nasal compared with oral breathing would acutely lower blood pressure (BP) and improve heart rate variability (HRV) metrics. We tested 20 adults in this study [13 females/7 males; age: 18(1) years, median (IQR); body mass index: 23 ± 2 kg·m-2, means ± SD]. We compared variables between nasal- and oral-only breathing (random order, five min each) using paired, two-tailed t tests or Wilcoxon signed-rank paired tests with significance set to P < 0.05. We report the median (interquartile range) for diastolic BP and means ± SD for all other variables. We found that nasal breathing was associated with a lower mean BP (nasal: 84 ± 7 vs. oral: 86 ± 5 mmHg, P = 0.006, Cohen's d = 0.70) and diastolic BP [nasal: 68(8) vs. oral: 72(5) mmHg, P < 0.001, Rank-biserial correlation = 0.89] but not systolic BP (nasal: 116 ± 11 vs. oral: 117 ± 9 mmHg, P = 0.48, Cohen's d = 0.16) or heart rate (HR; nasal: 74 ± 10 vs. oral: 75 ± 8 beats·min-1, P = 0.90, Cohen's d = 0.03). We also found that nasal breathing was associated with a higher high-frequency (HF) contribution to HRV (nasal: 59 ± 19 vs. oral: 52 ± 21%, P = 0.04, Cohen's d = 0.50) and a lower low frequency-to-HF ratio at rest (nasal: 0.9 ± 0.8 vs. oral: 1.2 ± 0.9, P = 0.04, Cohen's d = 0.49). These data suggest that nasal compared with oral breathing acutely 1) lowers mean and diastolic BP, 2) does not affect systolic BP or heart rate, and 3) increases parasympathetic contributions to HRV.NEW & NOTEWORTHY There is growing interest in how breathing pace, pattern, and training (e.g., device-guided or -resisted breathing) affect prognostic cardiovascular variables. However, the potential effects of the breathing route on prognostic cardiovascular variables are unclear. These data suggest that nasal compared with oral breathing 1) lowers mean and diastolic blood pressure (BP), 2) does not affect systolic BP or heart rate (HR), and 3) increases parasympathetic contributions to heart rate variability (HRV). These data suggest that acute nasal breathing improves several prognostic cardiovascular variables.
Collapse
Affiliation(s)
- Joseph C Watso
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Jens N Cuba
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Savannah L Boutwell
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Justine E Moss
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Allison K Bowerfind
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isabela M Fernandez
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Jessica M Cassette
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Allyson M May
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Katherine F Kirk
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
17
|
Melo MR, Wykes AD, Connelly AA, Bassi JK, Cheung SD, McDougall SJ, Menuet C, Bathgate RAD, Allen AM. Selective transduction and photoinhibition of pre-Bötzinger complex neurons that project to the facial nucleus in rats affects nasofacial activity. eLife 2023; 12:e85398. [PMID: 37772793 PMCID: PMC10653671 DOI: 10.7554/elife.85398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The pre-Bötzinger complex (preBötC), a key primary generator of the inspiratory breathing rhythm, contains neurons that project directly to facial nucleus (7n) motoneurons to coordinate orofacial and nasofacial activity. To further understand the identity of 7n-projecting preBötC neurons, we used a combination of optogenetic viral transgenic approaches to demonstrate that selective photoinhibition of these neurons affects mystacial pad activity, with minimal effects on breathing. These effects are altered by the type of anesthetic employed and also between anesthetized and conscious states. The population of 7n-projecting preBötC neurons we transduced consisted of both excitatory and inhibitory neurons that also send collaterals to multiple brainstem nuclei involved with the regulation of autonomic activity. We show that modulation of subgroups of preBötC neurons, based on their axonal projections, is a useful strategy to improve our understanding of the mechanisms that coordinate and integrate breathing with different motor and physiological behaviors. This is of fundamental importance, given that abnormal respiratory modulation of autonomic activity and orofacial behaviors have been associated with the development and progression of diseases.
Collapse
Affiliation(s)
- Mariana R Melo
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
| | - Alexander D Wykes
- Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
- Florey Department of Neuroscience and Mental Health, University of MelbourneMelbourneAustralia
| | - Angela A Connelly
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
| | - Jaspreet K Bassi
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
| | - Shane D Cheung
- Biological Optical Microscopy Platform (BOMP) - University of MelbourneMelbourneAustralia
| | | | - Clément Menuet
- Institut de Neurobiologie de la Méditerrané, INMED UMR1249, INSERM, Aix-Marseille UniversitéMarseilleFrance
| | - Ross AD Bathgate
- Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourneAustralia
| | - Andrew M Allen
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
- Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
| |
Collapse
|
18
|
Berger D, Werner Moller P, Bachmann KF. Cardiopulmonary interactions-which monitoring tools to use? Front Physiol 2023; 14:1234915. [PMID: 37621761 PMCID: PMC10445648 DOI: 10.3389/fphys.2023.1234915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Heart-lung interactions occur due to the mechanical influence of intrathoracic pressure and lung volume changes on cardiac and circulatory function. These interactions manifest as respiratory fluctuations in venous, pulmonary, and arterial pressures, potentially affecting stroke volume. In the context of functional hemodynamic monitoring, pulse or stroke volume variation (pulse pressure variation or stroke volume variability) are commonly employed to assess volume or preload responsiveness. However, correct interpretation of these parameters requires a comprehensive understanding of the physiological factors that determine pulse pressure and stroke volume. These factors include pleural pressure, venous return, pulmonary vessel function, lung mechanics, gas exchange, and specific cardiac factors. A comprehensive knowledge of heart-lung physiology is vital to avoid clinical misjudgments, particularly in cases of right ventricular (RV) failure or diastolic dysfunction. Therefore, when selecting monitoring devices or technologies, these factors must be considered. Invasive arterial pressure measurements of variations in breath-to-breath pressure swings are commonly used to monitor heart-lung interactions. Echocardiography or pulmonary artery catheters are valuable tools for differentiating preload responsiveness from right ventricular failure, while changes in diastolic function should be assessed alongside alterations in airway or pleural pressure, which can be approximated by esophageal pressure. In complex clinical scenarios like ARDS, combined forms of shock or right heart failure, additional information on gas exchange and pulmonary mechanics aids in the interpretation of heart-lung interactions. This review aims to describe monitoring techniques that provide clinicians with an integrative understanding of a patient's condition, enabling accurate assessment and patient care.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Per Werner Moller
- Department of Anaesthesia, SV Hospital Group, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaspar F. Bachmann
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Liu H, Liang H, Yu X, Han Y, Wang G, Yan M, Wang W, Li S. A study on the immediate effects of enhanced external counterpulsation on physiological coupling. Front Neurosci 2023; 17:1197598. [PMID: 37351421 PMCID: PMC10282182 DOI: 10.3389/fnins.2023.1197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Enhanced external counterpulsation (EECP) is a non-invasive assisted circulation technique for its clinical application in the rehabilitation and management of ischemic cardiovascular and cerebrovascular diseases, which has complex physiological and hemodynamic effects. However, the effects of EECP on the coupling of physiological systems are still unclear. We aimed to investigate the immediate effects of EECP on the coupling between integrated physiological systems such as cardiorespiratory and cardiovascular systems. Methods Based on a random sham-controlled design, simultaneous electrocardiography, photoplethysmography, bio-electrical impedance, and continuous hemodynamic data were recorded before, during and after two consecutive 30 min EECP in 41 healthy adults. Physiological coupling strength quantified by phase synchronization indexes (PSI), hemodynamic measurements and heart rate variability indices of 22 subjects (female/male: 10/12; age: 22.6 ± 2.1 years) receiving active EECP were calculated and compared with those of 19 sham control subjects (female/male: 7/12; age: 23.6 ± 2.5 years). Results Immediately after the two consecutive EECP interventions, the physiological coupling between respiratory and cardiovascular systems PSIRES-PTT (0.34 ± 0.14 vs. 0.49 ± 0.17, P = 0.002), the physiological coupling between cardiac and cardiovascular systems PSIIBI-PTT (0.41 ± 0.14 vs. 0.52 ± 0.16, P = 0.006) and the total physiological coupling PSItotal (1.21 ± 0.35 vs. 1.57 ± 0.49, P = 0.005) in the EECP group were significantly lower than those before the EECP intervention, while the physiological coupling indexes in the control group did not change significantly (P > 0.05). Conclusion Our study provides evidence that the PSI is altered by immediate EECP intervention. We speculate that the reduced PSI induced by EECP may be a marker of disturbed physiological coupling. This study provides a new method for exploring the mechanism of EECP action and may help to further optimize the EECP technique.
Collapse
Affiliation(s)
- Hongyun Liu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Hui Liang
- Department of Hyperbaric Oxygen, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Yu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Yi Han
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Guojing Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Oxygen, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Shijun Li
- Department of Diagnostic Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Migliaccio GM, Russo L, Maric M, Padulo J. Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports (Basel) 2023; 11:sports11050103. [PMID: 37234059 DOI: 10.3390/sports11050103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Breathing is a natural and necessary process for humans. At the same time, the respiratory pace and frequency can vary so much, depending on the status of the subject. Specifically, in sports, breathing can have the effect of limiting performance from a physiological point of view, or, on the other hand, breathing can regulate the psychological status of the athletes. Therefore, the aim of this narrative review is to focus on the literature about the physiological and psychological aspects of breathing pace in sports performance, merging these two aspects because they are usually considered split, in order to create a new integrated vision of breathing and sports performance. Voluntary breathing can be divided into a slow or fast pace (VSB and VFB, respectively), and their effects on both the physiological and psychological parameters are very different. VSB can benefit athletes in a variety of ways, not just physically but mentally as well. It can help improve cardiovascular fitness, reduce stress and anxiety, and improve overall health and well-being, allowing athletes to maintain focus and concentration during training and competition. VFB is normal during physical training and competition, but away from training, if it is not voluntary, it can cause feelings of anxiety, panic, dizziness, and lightheadedness and trigger a stress response in the body, affecting the athlete's quality of life. In summary, the role of breathing in the performance of athletes should be considered, although no definitive data are available. The connection between breathing and sports performance is still unclear, but athletes can obtain benefits in focus and concentration using slow breathing strategies.
Collapse
Affiliation(s)
| | - Luca Russo
- Department of Human Sciences, Università Telematica degli Studi IUL, 50122 Florence, Italy
| | - Mike Maric
- Department of Performance, Sport Science Lab, 09131 Cagliari, Italy
| | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
21
|
Yu J. Multiple sensor theory in airway mechanosensory units. Respir Physiol Neurobiol 2023; 313:104071. [PMID: 37149207 DOI: 10.1016/j.resp.2023.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Two conventional doctrines govern airway mechanosensory interpretation: One-Sensor Theory (OST) and Line-Labeled Theory (LLT). In OST, one afferent fiber connects to a single sensor. In LLT, a different type of sensor sends signals via its specific line to a particular brain region to evoke its reflex. Thus, airway slowly adapting receptors (SARs) inhibit breathing and rapidly adapting receptors (RARs) stimulate breathing. However, recent studies show many different mechanosensors connect to a single afferent fiber (Multiple-Sensor Theory, MST). That is, SARs and RARs may send different types of information through the same afferent pathway, indicating different information has been integrated at the sensory unit level. Thus, a sensory unit is not merely a transducer (textbook concept), but also a processor. MST is a conceptual shift. Data generated over last eight decades under OST require re-interpretation.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Pulmonary Medicine, University of Louisville, Louisville, KY 40292, Robley Rex VA Medical Center, Louisville, KY 40206, USA.
| |
Collapse
|