1
|
Orzari LO, Kalinke C, Silva-Neto HA, Rocha DS, Camargo J, Coltro WK, Janegitz BC. Screen-Printing vs Additive Manufacturing Approaches: Recent Aspects and Trends Involving the Fabrication of Electrochemical Sensors. Anal Chem 2025; 97:1482-1494. [PMID: 39817415 PMCID: PMC11780578 DOI: 10.1021/acs.analchem.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring. Modern designs have given rise to innovative manufacturing protocols, including screen and additive printing methods, for creating sophisticated 2D and 3D electrochemical devices. This perspective provides a comprehensive overview of the screen-printing and additive-printing protocols for constructing electrochemical devices. It is also informed that screen-printed sensors offer cost-effectiveness and ease of fabrication, although they may pose challenges due to the use of toxic volatile inks and limited design flexibility. On the other hand, additive manufacturing, especially the fused filament fabrication (or fused deposition modeling) strategies, allows for intricate three-dimensional sensor designs and rapid prototyping of customized equipment. However, the post-treatment processes and material selection can affect production costs. Despite their unique advantages and limitations, both printing techniques show promise for various applications, driving innovation in the field toward more advanced sensor designs. Finally, these advancements pave the way for improved sensor performance and expand possibilities for academic, environmental, and industrial applications. The future is full of exciting opportunities for state-of-the-art sensor technologies that will further improve our ability to detect and determine various substances in a wide range of environments as researchers continue to explore the many possibilities of electrochemical devices.
Collapse
Affiliation(s)
- Luiz O. Orzari
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Cristiane Kalinke
- Institute
of Chemistry, University of Campinas, 13083-859 Campinas, São Paulo, Brazil
- Department
of Chemistry, Federal University of Parana, 81531-980 Curitiba, Paraná, Brazil
| | - Habdias A. Silva-Neto
- Department
of Chemistry, Federal University of Santa
Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Danielly S. Rocha
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Jéssica
R. Camargo
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Wendell K.T. Coltro
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
- National
Institute of Bioanalytical Science and Technology, 13084-971 Campinas, São Paulo, Brazil
| | - Bruno C. Janegitz
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
| |
Collapse
|
2
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Kalinke C, Crapnell RD, de Oliveira PR, Janegitz BC, Bonacin JA, Banks CE. How to Improve Sustainability in Fused Filament Fabrication (3D Printing) Research? GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300408. [PMID: 39006060 PMCID: PMC11237179 DOI: 10.1002/gch2.202300408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Indexed: 07/16/2024]
Abstract
This review aims to provide an overview of sustainable approaches that can be incorporated into well-known procedures for the development of materials, pre- and post-treatments, modifications, and applications of 3D-printed objects, especially for fused filament fabrication (FFF). Different examples of conductive and non-conductive bespoke filaments using renewable biopolymers, bioplasticizers, and recycled materials are presented and discussed. The main final characteristics of the polymeric materials achieved according to the feedstock, preparation, extrusion, and treatments are also covered. In addition to recycling and remanufacturing, this review also explores other alternative approaches that can be adopted to enhance the sustainability of methods, aiming to produce efficient and environmentally friendly 3D printed products. Adjusting printing parameters and miniaturizing systems are also highlighted in this regard. All these recommended strategies are employed to minimize environmental damage, while also enabling the production of high-quality, economical materials and 3D printed systems. These efforts align with the principles of Green Chemistry, Sustainable Development Goals (SDGs), 3Rs (Reduce, Reuse, Recycle), and Circular Economy concepts.
Collapse
Affiliation(s)
- Cristiane Kalinke
- Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasSão Paulo13083–859Brazil
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
| | - Robert D. Crapnell
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
| | - Paulo R. de Oliveira
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
- Department of Nature SciencesMathematics, and EducationFederal University of São Carlos (UFSCar)ArarasSão Paulo13600–970Brazil
| | - Bruno C. Janegitz
- Department of Nature SciencesMathematics, and EducationFederal University of São Carlos (UFSCar)ArarasSão Paulo13600–970Brazil
| | - Juliano A. Bonacin
- Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasSão Paulo13083–859Brazil
| | - Craig E. Banks
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
| |
Collapse
|