1
|
Islam J, So KH, Kc E, Moon HC, Kim A, Hyun SH, Kim S, Park YS. Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington's disease. Stem Cell Res Ther 2021; 12:585. [PMID: 34809707 PMCID: PMC8607638 DOI: 10.1186/s13287-021-02653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) transplantation had shown to provide a potential source of cells in neurodegenerative disease studies and lead to behavioral recovery in lentivirus transfected or, toxin-induced Huntington's disease (HD) rodent model. Here, we aimed to observe if transplantation of superparamagnetic iron oxide nanoparticle (SPION)-labeled hESCs could migrate in the neural degenerated area and improve motor dysfunction in an AAV2-Htt171-82Q transfected Huntington rat model. METHODS All animals were randomly allocated into three groups at first: HD group, sham group, and control group. After six weeks, the animals of the HD group and sham group were again divided into two subgroups depending on animals receiving either ipsilateral or contralateral hESCs transplantation. We performed cylinder test and stepping test every two weeks after AAV2-Htt171-82Q injection and hESCs transplantation. Stem cell tracking was performed once per two weeks using T2 and T2*-weighted images at 4.7 Tesla MRI. We also performed immunohistochemistry and immunofluorescence staining to detect the presence of hESCs markers, huntingtin protein aggregations, and iron in the striatum. RESULTS After hESCs transplantation, the Htt virus-injected rats exhibited significant behavioral improvement in behavioral tests. SPION labeled hESCs showed migration with hypointense signal in MRI. The cells were positive with βIII-tubulin, GABA, and DARPP32. CONCLUSION Collectively, our results suggested that hESCs transplantation can be a potential treatment for motor dysfunction of Huntington's disease.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyoung Ha So
- Institute for Stem Cell & Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyeong Cheol Moon
- Department of Neurosurgery, Gammaknife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Sang Hwan Hyun
- Institute for Stem Cell & Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Soochong Kim
- Institute for Stem Cell & Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Institute for Stem Cell & Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Gammaknife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
2
|
Fraiwan L, Hassanin O. Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers. PLoS One 2021; 16:e0252380. [PMID: 34086723 PMCID: PMC8177554 DOI: 10.1371/journal.pone.0252380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022] Open
Abstract
This study proposes a reliable computer-aided framework to identify gait fluctuations associated with a wide range of degenerative neuromuscular disease (DNDs) and health conditions. Investigated DNDs included amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Huntington's disease (HD). We further performed a statistical and classification comparison elucidating the discriminative capability of different gait signals, including vertical ground reaction force (VGRF), stride duration, stance duration, and swing duration. Feature representation of these gait signals was based on statistical amplitude quantification using the root mean square (RMS), variance, kurtosis, and skewness metrics. We investigated various decision tree (DT) based ensemble methods such as bagging, adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and random subspace to tackle the challenge of multi-class classification. Experimental results showed that AdaBoost ensembling provided a 6.49%, 0.78%, 2.31%, and 2.72% prediction rate improvement for the VGRF, stride, stance, and swing signals, respectively. The proposed approach achieved the highest classification accuracy of 99.17%, sensitivity of 98.23%, and specificity of 99.43%, using the VGRF-based features and the adaptive boosting classification model. This work demonstrates the effective capability of using simple gait fluctuation analysis and machine learning approaches to detect DNDs. Computer-aided analysis of gait fluctuations provides a promising advent to enhance clinical diagnosis of DNDs.
Collapse
Affiliation(s)
- Luay Fraiwan
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, UAE
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Omnia Hassanin
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, UAE
| |
Collapse
|
4
|
Weydt P, Dupuis L, Petersen Å. Thermoregulatory disorders in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:761-775. [PMID: 30459039 DOI: 10.1016/b978-0-444-64074-1.00047-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a paradigmatic autosomal-dominant adult-onset neurodegenerative disease. Since the identification of an abnormal expansion of a trinucleotide repeat tract in the huntingtin gene as the underlying genetic defect, a broad range of transgenic animal models of the disease has become available and these have helped to unravel the relevant molecular pathways in unprecedented detail. Of note, some of the most informative of these models develop thermoregulatory defects such as hypothermia, problems with adaptive thermogenesis, and an altered circadian temperature rhythm. Both central, e.g., in the hypothalamus and peripheral, i.e., the brown adipose tissue and skeletal muscle, problems contribute to the phenotype. Importantly, these structures and pathways are also affected in human HD. Yet, currently the evidence for bona fide thermodysregulation in human HD patients remains anecdotal. This may be due to a lack of reliable tools for monitoring body temperature in an outpatient setting. Regardless, study of the temperature phenotype has contributed to the identification of unexpected molecular targets, such as the PGC-1α pathway.
Collapse
Affiliation(s)
- Patrick Weydt
- Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany.
| | - Luc Dupuis
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Åsa Petersen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|