1
|
Cusimano M, Tom VJ, Houle JD, Hou S. Passive Hindlimb Cycling Enhances Tolerance of Cardiac Electrical Conduction in Rats with Spinal Cord Injuries. J Neurotrauma 2025. [PMID: 40227565 DOI: 10.1089/neu.2025.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
High-level spinal cord injury (SCI) often disrupts supraspinal control of sympathetic input to the heart. The resulting imbalance in the autonomic nervous system increases the risk of developing cardiac arrhythmias. It was previously demonstrated that passive hindlimb cycling (PHLC) effectively maintains or improves bodily function including cardiovascular performance following SCI. However, it remains unclear whether the exercise can affect cardiac electrical disorders. To address this specific question, we complemented a complete SCI at a high-thoracic level in rats and then performed PHLC for 5 or 10 weeks. Naive rats or those receiving injury alone served as controls. Subsequently, a telemetric transmitter was implanted to record blood pressure and electrocardiogram. In 24-h resting recordings, cycling training did not influence SCI-induced hypotension but significantly reduced the events of spontaneous autonomic dysreflexia. When colorectal distension was employed to artificially trigger autonomic dysreflexia, a fewer number of severe arrhythmias (e.g., atrioventricular block, premature ventricular contraction single, and sinus pause) were found in animals with 10-week PHLC compared with injury controls. As a stress test, a series of increasing concentrations of dobutamine was administered to stimulate cardiac sympathetic activity. Consequently, various types of arrhythmias occurred in animals with SCI alone, whereas very few were detected in animals obtaining exercise training for 10 weeks. Furthermore, pharmacological intervention disclosed that exercise appeared to reduce unopposed parasympathetic tone that arose post to injury. Thus, the results suggest that activity-based training for the long term improves autonomic balance to enhance tolerance of cardiac electrical conduction following SCI.
Collapse
Affiliation(s)
- Marissa Cusimano
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - John D Houle
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Shaoping Hou
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology & Anatomical Sciences, Department of Physical Medicine & Rehabilitation, Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA
- Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, USA
| |
Collapse
|
2
|
Sato T, Kimura R, Kasukawa Y, Kudo D, Hatakeyama K, Watanabe M, Takahashi Y, Okura K, Suda T, Miyamoto D, Iwami T, Miyakoshi N. Effects of Gait Rehabilitation Robot Combined with Electrical Stimulation on Spinal Cord Injury Patients' Blood Pressure. SENSORS (BASEL, SWITZERLAND) 2025; 25:984. [PMID: 39943623 PMCID: PMC11819915 DOI: 10.3390/s25030984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Orthostatic hypotension can occur during acute spinal cord injury (SCI) and subsequently persist. We investigated whether a gait rehabilitation robot combined with functional electrical stimulation (FES) stabilizes hemodynamics during orthostatic stress in SCI. METHODS Six intermediate-phase SCI patients (five males and one female; mean age: 49.5 years; four with quadriplegia and two with paraplegia) participated. The participants underwent robotic training (RT), with a gait rehabilitation robot combined with FES, and tilt table training (TT). Hemodynamics were monitored using a laser Doppler flowmeter for the earlobe blood flow (EBF) and non-invasive blood pressure measurements. The EBF over time and the resting and exercise blood pressures were compared between each session. Adverse events were also evaluated. RESULTS The EBF change decreased in TT but increased in RT at the 0.5-min slope (p = 0.03). Similarly, the pulse rate change increased in TT but decreased in RT at the 1-min slope (p = 0.03). Systolic and mean blood pressures were slightly higher in RT than in TT but not significantly (p = 0.35; 0.40). No adverse events occurred in RT, but two TT sessions were incomplete due to dizziness. CONCLUSIONS RT with FES can reduce symptoms during orthostatic stress in intermediate-phase SCI. Future studies require a larger number of cases to generalize this study.
Collapse
Affiliation(s)
- Takahiro Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; (T.S.); (N.M.)
| | - Ryota Kimura
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; (T.S.); (N.M.)
| | - Yuji Kasukawa
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Daisuke Kudo
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Kazutoshi Hatakeyama
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Motoyuki Watanabe
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Yusuke Takahashi
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Kazuki Okura
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Tomohiro Suda
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Daido Miyamoto
- Division of Rehabilitation Medicine, Akita University Hospital, 44-2, Hiroomote Hasunuma, Akita 010-8543, Japan; (Y.K.); (D.K.); (K.H.); (M.W.); (Y.T.); (K.O.); (T.S.); (D.M.)
| | - Takehiro Iwami
- Department of Systems Design Engineering, Faculty of Engineering Science, Akita University Graduate School of Engineering Science, 1-1 Tegata Gakuen-cho, Akita 010-8502, Japan;
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; (T.S.); (N.M.)
| |
Collapse
|
3
|
Radler JB, McBride AR, Saha K, Nighot P, Holmes GM. Regional Heterogeneity in Intestinal Epithelial Barrier Permeability and Mesenteric Perfusion After Thoracic Spinal Cord Injury. Dig Dis Sci 2024; 69:3236-3248. [PMID: 39001959 DOI: 10.1007/s10620-024-08537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) disrupts intestinal barrier function, thereby increasing antigen permeation and leading to poor outcomes. Despite the intestinal tract's anatomic and physiologic heterogeneity, studies following SCI have not comprehensively addressed intestinal pathophysiology with regional specificity. AIMS AND METHODS We used an experimental model of high thoracic SCI to investigate (1) regional mucosal oxidative stress using dihydroethidium labeling; (2) regional paracellular permeability to small- and large-molecular probes via Ussing chamber; (3) regional intestinal tight junction (TJ) protein expression; and (4) hindgut perfusion via the caudal mesenteric artery. RESULTS Dihydroethidium staining was significantly elevated within duodenal mucosa at 3-day post-SCI. Molar flux of [14C]-urea was significantly elevated in duodenum and proximal colon at 3-day post-SCI, while molar flux of [3H]-inulin was significantly elevated only in duodenum at 3-day post-SCI. Barrier permeability was mirrored by a significant increase in the expression of pore-forming TJ protein claudin-2 in duodenum and proximal colon at 3-day post-SCI. Claudin-2 expression remained significantly elevated in proximal colon at 3-week post-SCI. Expression of the barrier-forming TJ protein occludin was significantly reduced in duodenum at 3-day post-SCI. Caudal mesenteric artery flow was unchanged by SCI at 3 days or 3 weeks despite significant reductions in mean arterial pressure. CONCLUSION These data show that T3-SCI provokes elevated mucosal oxidative stress, altered expression of TJ proteins, and elevated intestinal barrier permeability in the proximal intestine. In contrast, mucosal oxidative stress and intestinal barrier permeability were unchanged in the hindgut after SCI. This regional heterogeneity may result from differential sensitivity to reduced mesenteric perfusion, though further studies are required to establish a causal link. Understanding regional differences in intestinal pathophysiology is essential for developing effective treatments and standards of care for individuals with SCI.
Collapse
Affiliation(s)
- Jackson B Radler
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA.
| |
Collapse
|
4
|
Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, Michels L, Hubli M. Intrinsic brain connectivity alterations despite intact pain inhibition in subjects with neuropathic pain after spinal cord injury: a pilot study. Sci Rep 2023; 13:11943. [PMID: 37488130 PMCID: PMC10366123 DOI: 10.1038/s41598-023-37783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
Endogenous pain modulation in humans is frequently investigated with conditioned pain modulation (CPM). Deficient pain inhibition is a proposed mechanism that contributes to neuropathic pain (NP) after spinal cord injury (SCI). Recent studies have combined CPM testing and neuroimaging to reveal neural correlates of CPM efficiency in chronic pain. This study investigated differences in CPM efficiency in relation to resting-state functional connectivity (rsFC) between 12 SCI-NP subjects and 13 age- and sex-matched healthy controls (HC). Twelve and 11 SCI-NP subjects were included in psychophysical and rsFC analyses, respectively. All HC were included in the final analyses. Psychophysical readouts were analysed to determine CPM efficiency within and between cohorts. Group differences of rsFC, in relation to CPM efficiency, were explored with seed-to-voxel rsFC analyses with pain modulatory regions, e.g. ventrolateral periaqueductal gray (vlPAG) and amygdala. Overall, pain inhibition was not deficient in SCI-NP subjects and was greater in those with more intense NP. Greater pain inhibition was associated with weaker rsFC between the vlPAG and amygdala with the visual and frontal cortex, respectively, in SCI-NP subjects but with stronger rsFC in HC. Taken together, SCI-NP subjects present with intact pain inhibition, but can be differentiated from HC by an inverse relationship between CPM efficiency and intrinsic connectivity of supraspinal regions. Future studies with larger cohorts are necessary to consolidate the findings in this study.
Collapse
Affiliation(s)
- Vincent Huynh
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland.
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Spyridon Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
5
|
Sekar A, Datta D, Lakha A, Jena SS, Bansal S, Sahu RN. Oral Midodrine as an Adjunct in Rapid Weaning of Intravenous Vasopressor Support in Spinal Cord Injury. Asian J Neurosurg 2023; 18:306-311. [PMID: 37397051 PMCID: PMC10310436 DOI: 10.1055/s-0043-1769755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Background Majority of acute cervical spinal cord injury end up requiring long-term stay in intensive care unit (ICU). During the initial few days after spinal cord injury, most patients are hemodynamically unstable requiring intravenous vasopressors. However, many studies have noted that long-term intravenous vasopressors remain the main reason for prolongation of ICU stay. In this series, we report the effect of using oral midodrine in reducing the amount and duration of intravenous vasopressors in patients with acute cervical spinal cord injury. Materials and Methods Five adult patients with cervical spinal cord injury after initial evaluation and surgical stabilization are assessed for the need for intravenous vasopressors. If patients continue to need intravenous vasopressors for more than 24 hours, they were started on oral midodrine. Its effect on weaning of intravenous vasopressors was assessed. Results Patients with systemic and intracranial injury were excluded from the study. Midodrine helped in weaning of intravenous vasopressors in the first 24 to 48 hours and helped in complete weaning of intravenous vasopressors. The rate of reduction was between 0.5 and 2.0 µg/min. Conclusion Oral midodrine does have an effect in reduction of intravenous vasopressors for patients needing prolonged support after cervical spine injury. The real extent of this effect needs to be studied with collaboration of multiple centers dealing with spinal injuries. The approach seems to be a viable alternative to rapidly wean intravenous vasopressors and reduce duration of ICU stay.
Collapse
Affiliation(s)
- Arunkumar Sekar
- Department of Neurosurgery, All India Institute of Medical Sciences – Bhubaneswar, Bhubaneswar, Odisha, India
| | - Debajyoti Datta
- Department of Neurosurgery, All India Institute of Medical Sciences – Bhubaneswar, Bhubaneswar, Odisha, India
| | - Avinash Lakha
- Department of Neurosurgery, All India Institute of Medical Sciences – Bhubaneswar, Bhubaneswar, Odisha, India
| | - Sritam Swaroop Jena
- Department of Anesthesiology, All India Institute of Medical Sciences – Bhubaneswar, Bhubaneswar, Odisha, India
| | - Sumit Bansal
- Department of Neurosurgery, All India Institute of Medical Sciences – Bhubaneswar, Bhubaneswar, Odisha, India
| | - Rabi Narayan Sahu
- Department of Neurosurgery, All India Institute of Medical Sciences – Bhubaneswar, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Gee CM, Williams AM, Peters CM, Eves ND, Sheel AW, West CR. Influence of respiratory loading on left-ventricular function in cervical spinal cord injury. J Physiol 2022; 600:4105-4118. [PMID: 35751465 DOI: 10.1113/jp282717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cervical spinal cord injury (C-SCI) alters both the cardiac and respiratory systems, however little is known as to how these systems interact following injury. Here, we manipulated inspiratory or expiratory intrathoracic pressure (ITP) to mechanistically test the role of the respiratory pump on circulatory function in highly-trained individuals with C-SCI and an able-bodied reference group. In individuals with C-SCI, greater ITP during expiratory loading caused dynamic hyperinflation that was associated with impaired left-ventricular filling. More negative ITP during inspiratory loading did not significantly alter left-ventricular volumes in either group. Interventions that prevent dynamic hyperinflation and/or enhance the ability to generate expiratory pressures may help preserve left-ventricular filling in individuals with C-SCI. ABSTRACT Cervical spinal cord injury (C-SCI) negatively impacts cardiac and respiratory function. As the heart and lungs are linked via the pulmonary circuit these systems are interdependent. Here, we utilized inspiratory and expiratory loading to assess whether augmenting the respiratory pump improves left-ventricular (LV) filling and output in individuals with motor-complete C-SCI. We hypothesized LV end-diastolic volume (LVEDV) would increase and decrease with inspiratory and expiratory loading, respectively. Participants (C-SCI: 7M/1F, 35±7 years; able-bodied: 7M/1F, 32±6 years) were assessed under five conditions during 45° head-up tilt; unloaded, inspiratory loading with -10 and -20cmH2 O esophageal pressure (Pes) on inspiration, and expiratory loading with +10 and +20cmH2 O Pes on expiration. An esophageal balloon catheter monitored Pes and LV structure and function were assessed by echocardiography. In C-SCI only, (1) +20cmH2 O reduced LVEDV vs. unloaded (81±15 vs. 88±11 mL, p = 0.006); (2) heart rate was higher during +20cmH2 O compared to unloaded (p = 0.001) and +10cmH2 O (p = 0.002); (3) cardiac output was higher during +20cmH2 O than unloaded (p = 0.002); and (4) end-expiratory lung volume was higher during +20cmH2 O vs. unloaded (63±10 vs. 55±13% total lung capacity, p = 0.003) but was unaffected by inspiratory loading. In both groups, -10 and -20cmH2 O had no significant effect on LVEDV. These findings suggest greater expiratory positive pressure acutely impairs LV filling in C-SCI, potentially via impaired venous return, mediastinal constraint and/or direct ventricular interaction subsequent to dynamic hyperinflation. Inspiratory loading did not significantly improve LV function in C-SCI and neither inspiratory nor expiratory loading affected cardiac function or lung volumes in able-bodied participants. Abstract figure legend Background: Cervical spinal cord injury (C-SCI) alters both the cardiac and respiratory systems. However, expiratory function is compromised to a greater extent than inspiratory function. Experimental set up: To examine how the cardiac and respiratory systems interact following C-SCI we manipulated inspiratory or expiratory intrathoracic pressure (ITP) to mechanistically test how changes in ITP and lung volumes influence cardiac function in highly-trained individuals with C-SCI and an able-bodied reference group. Participants were assessed under five conditions during 45° head-up tilt; unloaded, two inspiratory loading, and two expiratory loading conditions. KEY FINDINGS Following C-SCI, greater ITP during expiratory loading increased lung volumes and was associated with impaired left-ventricular filling. Interventions that prevent increases in lung volumes and/or enhance the ability to generate expiratory pressures may help preserve left-ventricular filling in individuals with C-SCI. A portion of this figure was created with biorender.com This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cameron M Gee
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, BC.,School of Kinesiology, University of British Columbia, Vancouver, BC
| | - Alexandra M Williams
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, BC.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Kelowna, BC
| | - Carli M Peters
- School of Kinesiology, University of British Columbia, Vancouver, BC
| | - Neil D Eves
- Centre for Heart Lung & Vascular Health, University of British Columbia, Kelowna, BC
| | - Andrew W Sheel
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, BC.,School of Kinesiology, University of British Columbia, Vancouver, BC
| | - Christopher R West
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, BC.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Kelowna, BC.,Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
7
|
All over the MAP: describing pressure variability in acute spinal cord injury. Spinal Cord 2022; 60:470-475. [PMID: 35418625 DOI: 10.1038/s41393-022-00802-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Observational study. OBJECTIVES To examine the feasibility of meeting the current clinical guidelines for the hemodynamic management of acute spinal cord injury (SCI) which recommend maintaining mean arterial pressure (MAP) at 85-90 mmHg in the days following injury. METHODS This study examined data collected minute-by-minute to describe the pressure profile in the first 5 days following SCI in 16 patients admitted to the Intensive Care Unit at Vancouver General Hospital (40 ± 19 years, 13 M/3 F, C4-T11). MAP and intrathecal pressure (ITP) were monitored at 100 Hz by arterial and lumbar intrathecal catheters, respectively, and reported as the average of each minute. Spinal cord perfusion pressure was calculated as the difference between MAP and ITP. The minute-to-minute difference (MMdiff) of each pressure variable was calculated as the absolute difference between consecutive minutes. RESULTS Only 24 ± 7% of MAP recordings were between 85 and 90 mmHg. Average MAP MMdiff was ~3 mmHg. The percentage of MAP recordings within target range was negatively correlated with the degree of variability (i.e. MMdiff; r = -0.64, p < 0.008) whereas higher mean MAP was correlated with greater variability (r = 0.57, p = 0.021). CONCLUSIONS Our findings point to the 'real life' challenges in maintaining MAP in acute SCI patients. Given MAP fluctuated ~3 mmHg minute-to-minute, maintaining MAP within a 5 mmHg range with conventional volume replacement and vasopressors presents an almost impossible task for clinicians and warrants reconsideration of current management guidelines.
Collapse
|
8
|
A Hierarchical Machine Learning Solution for the Non-Invasive Diagnostic of Autonomic Dysreflexia. ELECTRONICS 2022. [DOI: 10.3390/electronics11040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
More than half of patients with high spinal cord injury (SCI) suffer from episodes of autonomic dysreflexia (AD), a condition that can lead to lethal situations, such as cerebral haemorrhage, if not treated correctly. Clinicians assess AD using clinical variables obtained from the patient’s history and physiological variables obtained invasively and non-invasively. This work aims to design a machine learning-based system to assist in the initial diagnosis of AD. For this purpose, 29 patients with SCI participated in a test at Cruces University Hospital in which data were collected using both invasive and non-invasive methods. The system proposed in this article is based on a two-level hierarchical classification to diagnose AD and only uses 35 features extracted from the non-invasive stages of the experiment (clinical and physiological features). The system achieved a 93.10% accuracy with a zero false negative rate for the class of having the disease, an essential condition for treating patients according to medical criteria.
Collapse
|
9
|
Seáñez I, Capogrosso M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron Med 2021; 7:16. [PMID: 34706778 PMCID: PMC8555080 DOI: 10.1186/s42234-021-00077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Electrical spinal cord stimulation (SCS) has been gaining momentum as a potential therapy for motor paralysis in consequence of spinal cord injury (SCI). Specifically, recent studies combining SCS with activity-based training have reported unprecedented improvements in motor function in people with chronic SCI that persist even without stimulation. In this work, we first provide an overview of the critical scientific advancements that have led to the current uses of SCS in neurorehabilitation: e.g. the understanding that SCS activates dormant spinal circuits below the lesion by recruiting large-to-medium diameter sensory afferents within the posterior roots. We discuss how this led to the standardization of implant position which resulted in consistent observations by independent clinical studies that SCS in combination with physical training promotes improvements in motor performance and neurorecovery. While all reported participants were able to move previously paralyzed limbs from day 1, recovery of more complex motor functions was gradual, and the timeframe for first observations was proportional to the task complexity. Interestingly, individuals with SCI classified as AIS B and C regained motor function in paralyzed joints even without stimulation, but not individuals with motor and sensory complete SCI (AIS A). Experiments in animal models of SCI investigating the potential mechanisms underpinning this neurorecovery suggest a synaptic reorganization of cortico-reticulo-spinal circuits that correlate with improvements in voluntary motor control. Future experiments in humans and animal models of paralysis will be critical to understand the potential and limits for functional improvements in people with different types, levels, timeframes, and severities of SCI.
Collapse
Affiliation(s)
- Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis, St. Louis, USA. .,Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, USA.
| | - Marco Capogrosso
- Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.,Department of Physical Medicine and Rehabilitation, Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
10
|
De Martino ML, De Bartolo M, Leemhuis E, Pazzaglia M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci 2021; 11:brainsci11081084. [PMID: 34439702 PMCID: PMC8391959 DOI: 10.3390/brainsci11081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.
Collapse
Affiliation(s)
- Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mina De Bartolo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
| | - Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-6-49917633
| |
Collapse
|
11
|
Harman KA, DeVeau KM, Squair JW, West CR, Krassioukov AV, Magnuson DSK. Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiol Rep 2021; 9:e14969. [PMID: 34337884 PMCID: PMC8327165 DOI: 10.14814/phy2.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Hemodynamic instability and cardiovascular (CV) dysfunction are hallmarks of patients living with cervical and high thoracic spinal cord injuries (SCI). Individuals experience bouts of autonomic dysreflexia (AD) and persistent hypotension which hamper the activities of daily living. Despite the widespread use of exercise training to improve health and CV function after SCI, little is known about how different training modalities impact hemodynamic stability and severity of AD in a model of incomplete SCI. In this study, we used implantable telemetry devices to assess animals with T2 contusions following 3.5 weeks of exercise training initiated 8 days post-injury: passive hindlimb cycling (T2-CYC, n = 5) or active forelimb swimming (T2-SW, n = 6). Uninjured and non-exercised SCI control groups were also included (CON, n = 6; T2-CON, n = 7; T10-CON, n = 6). Five weeks post-injury, both T2-CON and T2-CYC presented with resting hypotension compared to uninjured CON and T10-CON groups; no differences were noted in resting blood pressure in T2-SW versus CON and T10-CON. Furthermore, pressor responses to colorectal distention (AD) were larger in all T2-injured groups compared to T10-CON, and were not attenuated by either form of exercise training. Interestingly, when T2-injured animals were re-stratified based on terminal BBB scores (regardless of training group), animals with limited hindlimb recovery (T2-LOW, n = 7) had more severe AD responses. Our results suggest that the spontaneous recovery of locomotor and autonomic function after severe but incomplete T2 SCI also influences the severity of AD, and that short periods (3.5 weeks) of passive hindlimb cycling or active forelimb swimming are ineffective in this model.
Collapse
Affiliation(s)
- Kathryn A. Harman
- Department of Health & Sport SciencesUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kathryn M. DeVeau
- Department of Anatomy and Cell BiologyGeorge Washington UniversityWashingtonD.C.USA
| | - Jordan W. Squair
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Christopher R. West
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Andrei V. Krassioukov
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
- GF Strong Rehabilitation CentreVancouver Health AuthorityVancouverCanada
| | - David S. K. Magnuson
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
12
|
Hubbard ME, Phillips AA, Charbonneau R, Squair JW, Parr AM, Krassioukov A. PRES secondary to autonomic dysreflexia: A case series and review of the literature. J Spinal Cord Med 2021; 44:606-612. [PMID: 31140946 PMCID: PMC8288129 DOI: 10.1080/10790268.2019.1616146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Context: Autonomic dysreflexia (AD) is a complex syndrome seen in patients with spinal cord injuries (SCI) and can be life-threatening with a significant negative impact on the health of the individual. Posterior reversible encephalopathy syndrome (PRES) is thought to be caused, in part, by rapid elevations in blood pressure; leading to posterior cerebral circulatory edema. This can result in seizures, blindness and can progress to fatal intracranial hemorrhages.Findings: Here we present two cases of patients with SCI who developed PRES from AD. Each patient was correctly diagnosed, leading to appropriate treatment of the factors leading to their AD and subsequent resolution of their PRES symptoms.Conclusions/Clinical Relevance: In SCI patients who present with new seizures, visual deficits, or other neurologic signs, PRES should be considered as a part of the differential diagnosis as a good outcome relies on rapid recognition and treatment of AD.
Collapse
Affiliation(s)
- Molly E. Hubbard
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA,Correspondence to: Molly E. Hubbard, Department of Neurosurgery, University of Minnesota, MMC 96 Room D-429, Mayo Building, 420 Delaware St SE, Minneapolis, MN55455, USA; Ph: 612-624-6666.
| | - Aaron A. Phillips
- Departments of Physiology and Pharmacology and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Rebecca Charbonneau
- Department of Physical Medicine and Rehabilitation, University of Alberta, Calgary, AB, Canada
| | - Jordan W. Squair
- Department of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
| | - Ann M. Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrei Krassioukov
- Department of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Logan A, Freeman J, Pooler J, Kent B, Gunn H, Billings S, Cork E, Marsden J. Effectiveness of non-pharmacological interventions to treat orthostatic hypotension in elderly people and people with a neurological condition: a systematic review. JBI Evid Synth 2021; 18:2556-2617. [PMID: 32773495 DOI: 10.11124/jbisrir-d-18-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The objective of this review was to summarize the best available evidence regarding the effectiveness of non-pharmacological interventions to treat orthostatic hypotension (OH) in elderly people and people with a neurological condition. INTRODUCTION Orthostatic hypotension is common in elderly people and people with a neurological condition and can interfere with or limit rehabilitation. Non-pharmacological interventions to treat OH could allow for longer and earlier mobilization, which is recommended in national clinical guidelines for rehabilitation in the acute or sub-acute phase following stroke or other neurological conditions. INCLUSION CRITERIA The review considered people aged 50 years and older, and people aged 18 years and elderly people with a neurological condition. Non-pharmacological interventions to treat OH included compression garments, neuromuscular stimulation, physical counter-maneuvers, aerobic or resistance exercises, sleeping with head tilted up, increasing fluid and salt intake, and timing and size of meals. The comparator was usual care, no intervention, pharmacological interventions, or other non-pharmacological interventions. Outcome measures included systolic blood pressure, diastolic blood pressure, heart rate, cerebral blood flow, observed/perceived symptoms, duration of standing or sitting in minutes, tolerance of therapy, functional ability, and adverse events/effects. METHODS Databases for published and unpublished studies available in English up to April 2018 with no lower date limit were searched. Critical appraisal was conducted using standardized instruments from JBI. Data were extracted using standardized tools designed for quantitative studies. Where appropriate, studies were included in a meta-analysis; otherwise, data were presented in a narrative form due to heterogeneity. RESULTS Forty-three studies - a combination of randomized controlled trials (n = 13), quasi-experimental studies (n = 28), a case control study (n = 1), and a case report (n = 1) - with 1069 participants were included. Meta-analyses of three interventions (resistance exercise, electrical stimulation, and lower limb compression bandaging) showed no significant effect of these interventions. Results from individual studies indicated physical maneuvers such as leg crossing, leg muscle pumping/contractions, and bending forward improved orthostatic hypotension. Abdominal compression improved OH. Sleeping with head up in combination with pharmacological treatment was more effective than sleeping with head up alone. Eating smaller, more frequent meals was effective. Drinking 480 mL of water increased blood pressure. CONCLUSIONS The review found mixed results for the effectiveness of non-pharmacological interventions to treat OH in people aged 50 years and older, and people with a neurological condition. There are several non-pharmacological interventions that may be effective in treating OH, but not all have resulted in clinically meaningful changes in outcome. Some may not be suitable for people with moderate to severe disability; therefore, it is important for clinicians to consider the patient's abilities and impairments when considering which non-pharmacological interventions to implement.
Collapse
Affiliation(s)
- Angela Logan
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK.,Stroke and Neurology Therapy Team, Cornwall Partnership Foundation NHS Trust, Camborne Redruth Community Hospital, Cornwall, UK.,The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence
| | - Jennifer Freeman
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK.,The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence
| | - Jillian Pooler
- Faculty of Health, Peninsula Medical and Dentistry Schools, Plymouth, UK
| | - Bridie Kent
- The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence.,School of Nursing and Midwifery, Faculty of Health, Plymouth University, Plymouth, UK
| | - Hilary Gunn
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK
| | - Sarah Billings
- Stroke Rehabilitation Unit, Livewell Southwest, Mount Gould Hospital, Plymouth, UK
| | - Emma Cork
- Stroke Rehabilitation Department, Northern Devon Healthcare Trust, Northern Devon District Hospital, Barnstaple, UK
| | - Jonathan Marsden
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK.,The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence
| |
Collapse
|
14
|
Quantitative analysis of dysautonomia in patients with autonomic dysreflexia. J Neurol 2021; 268:2985-2994. [PMID: 33634338 DOI: 10.1007/s00415-021-10478-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Autonomic dysreflexia (AD) is a life-threatening condition for individuals with cervical or high-thoracic spinal cord injury (SCI). The profile of autonomic dysfunction in AD using validated clinical autonomic tests has not been described so far, although it could be useful to identify SCI patients at greater risk of developing AD non-invasively. With this objective, 37 SCI patients (27% female) were recruited, and hemodynamic and cardiac parameters were continuously monitored to determine the presence of AD, defined as an increase of systolic blood pressure of 20 mmHg or higher after bladder filling with saline. Then, standard autonomic function testing was performed, including Deep Breathing, Valsalva Manoeuvre and Tilt Table Test. Finally, baroreflex sensitivity (BRS), and spectral analysis of heart rate and blood pressure variability were measured at rest. Catecholamines and vasopressin levels were also measured at supine and upright positions. The severity of SCI was assessed through clinical and radiological examinations. AD was observed in 73.3% of SCI patients, being 63.6% of them asymptomatic during the dysreflexive episode. AD patients displayed a drop in sympathetic outflow, as determined by decreased noradrenalin plasma levels, reduced sympathovagal balance and increased BRS. In line with decreased sympathetic activity, the incidence of neurogenic orthostatic hypotension was higher in AD patients. Our results provide novel evidence regarding the autonomic dysfunction in SCI patients with AD compared to non-AD patients, posing non-invasively measured autonomic parameters as a powerful clinical tool to predict AD in SCI patients.
Collapse
|
15
|
Castro P, Ferreira ADS, Lopes AJ, Paula TD, Costa RMR, Cunha FA, Vigário PDS. Validity of the Polar V800 heart rate monitor for assessing cardiac autonomic control in individuals with spinal cord injury. MOTRIZ: REVISTA DE EDUCACAO FISICA 2021. [DOI: 10.1590/s1980-65742021003221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | - Felipe A. Cunha
- Universidade do Estado do Rio de Janeiro, Brazil; Universidade do Estado do Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This article reviews the management of orthostatic hypotension with emphasis on neurogenic orthostatic hypotension. RECENT FINDINGS Establishing whether the cause of orthostatic hypotension is a pathologic lesion in sympathetic neurons (ie, neurogenic orthostatic hypotension) or secondary to other medical causes (ie, non-neurogenic orthostatic hypotension) can be achieved by measuring blood pressure and heart rate at the bedside. Whereas fludrocortisone has been extensively used as first-line treatment in the past, it is associated with adverse events including renal and cardiac failure and increased risk of all-cause hospitalization. Distinguishing whether neurogenic orthostatic hypotension is caused by central or peripheral dysfunction has therapeutic implications. Patients with peripheral sympathetic denervation respond better to norepinephrine agonists/precursors such as droxidopa, whereas patients with central autonomic dysfunction respond better to norepinephrine reuptake inhibitors. SUMMARY Management of orthostatic hypotension is aimed at improving quality of life and reducing symptoms rather than at normalizing blood pressure. Nonpharmacologic measures are the key to success. Pharmacologic options include volume expansion with fludrocortisone and sympathetic enhancement with midodrine, droxidopa, and norepinephrine reuptake inhibitors. Neurogenic supine hypertension complicates management of orthostatic hypotension and is primarily ameliorated by avoiding the supine position and sleeping with the head of the bed elevated.
Collapse
|
17
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
18
|
Zahner MR, Beaumont E. Intermittent Fasting After Spinal Cord Injury Does Not Improve the Recovery of Baroreflex Regulation in the Rat. Front Physiol 2020; 11:865. [PMID: 32792982 PMCID: PMC7387690 DOI: 10.3389/fphys.2020.00865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Modest recovery of somatic function after incomplete spinal cord injury (SCI) has been widely demonstrated. Recently we have shown that spontaneous recovery of baroreflex regulation of sympathetic activity also occurs in rats. Dietary restriction in the form of every other day fasting (EODF) has been shown to have beneficial effects on the recovery of motor function after SCI in rats. The goal of this study was to determine if EODF augments the improvement of baroreflex regulation of sympathetic activity after chronic left thoracic (T8) surgical spinal hemisection. To determine this, we performed baroreflex tests on ad-lib fed or EODF rats 1 week or 7 weeks after left T8 spinal hemisection. One week after T8 left hemisection baroreflex testing revealed that gain of baroreflex responsiveness, as well as the ability to increase renal sympathetic nerve activity (RSNA) at low arterial pressure, was significantly impaired in the ad-lib fed but not the EODF rats compared with sham lesioned control rats. However, baroreflex tests performed 7 weeks after T8 left hemisection revealed the inability of both ad-lib and EODF rats to decrease RSNA at elevated arterial pressures. While there is evidence to suggest that EODF has beneficial effects on the recovery of motor function in rats, EODF did not significantly improve the recovery of baroreflex regulation of sympathetic activity.
Collapse
Affiliation(s)
- Matthew R. Zahner
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Eric Beaumont
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
19
|
Järve A, Qadri F, Todiras M, Schmolke S, Bader M. Angiotensin-II receptor type Ia does not contribute to cardiac atrophy following high-thoracic spinal cord injury in mice. Exp Physiol 2020; 105:1316-1325. [PMID: 32515106 DOI: 10.1113/ep088378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/03/2020] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of the renin-angiotensin system with angiotensin II acting via its receptor AT1a in spinal cord injury-induced cardiac atrophy? What is the main finding and its importance? Knockout of AT1a did not protect mice that had undergone thoracic level 4 transection from cardiac atrophy. There were no histopathological signs but there was reduced load-dependent left ventricular function (lower stroke volume and cardiac output) with preserved ejection fraction. ABSTRACT Spinal cord injury (SCI) leads to cardiac atrophy often accompanied by functional deficits. The renin-angiotensin system (RAS) with angiotensin II (AngII) signalling via its receptor AT1a might contribute to cardiac atrophy post-SCI. We performed spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation in female wild-type mice (WT, n = 27) and mice deficient in AT1a (Agtr1a-/- , n = 27). Echocardiography (0, 7, 21 and 28 days post-SCI) and histology and gene expression analyses at 1 and 2 months post-SCI were performed. We found cardiac atrophy post-SCI: reduced heart weight, reduced estimated left ventricular mass in Agtr1a-/- , and reduced cardiomyocyte diameter in WT mice. Although, the latter as well as stroke volume (SV) and cardiac output (CO) were reduced in Agtr1a-/- mice already at baseline, cardiomyocyte diameter was even smaller in injured Agtr1a-/- mice compared to injured WT mice. SV and CO were reduced in WT mice post-SCI. Ejection fraction and fractional shortening were preserved post-SCI in both genotypes. There were no histological signs of fibrosis and pathology in the cardiac sections of either genotype post-SCI. Gene expression of Agtr1a showed a trend for up-regulation at 2 months post-SCI; angiotensinogen was up-regulated at 2 month post-SCI in both genotypes. AngII receptor type 2 (Agtr2) was up- and down-regulated at 1 and 2 months post-SCI in WT mice, respectively, and Ang-(1-7) receptor (Mas) at 1 and 2 months post-SCI. Atrogin-1/MAFbx and MuRF1, atrophy markers, were not significantly up-regulated post-SCI. Our data show that lack of AT1a does not protect from cardiac atrophy post-SCI.
Collapse
Affiliation(s)
- Anne Järve
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Shirley Schmolke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Sachdeva R, Krassioukov AV, Bucksot JE, Hays SA. Acute Cardiovascular Responses to Vagus Nerve Stimulation after Experimental Spinal Cord Injury. J Neurotrauma 2020; 37:1149-1155. [PMID: 31973660 DOI: 10.1089/neu.2019.6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to enhance plasticity and improve recovery in a range of neurological disorders. A recent study highlights the therapeutic promise of VNS in promoting motor recovery after spinal cord injury (SCI). We investigated the safety of acute VNS in a rat model of chronic SCI. We measured the cardiovascular response to various VNS paradigms following chronic high-thoracic SCI that is known to deleteriously impact cardiovascular control. Dose-response experiments with continuous VNS revealed an SCI-dependent increase in sensitivity for heart rate (HR) and blood pressure (BP) compared with controls. A clinically relevant intermittent VNS resulted in transient reduction in HR in rats with SCI; however, BP remained unaltered. In all experiments, the effect lasted only while the VNS stimulus train was present, as HR and BP restored to baseline values as soon as VNS ended. No prolonged episodes of persisting hypotension were seen in either group. Further, VNS did not trigger autonomic dysreflexia or exacerbate the severity of autonomic dysreflexia when induced during or after stimulation sessions. Overall, these findings provide initial evidence that intermittent VNS at parameters used for targeted plasticity therapy (30 Hz, 0.8 mA) appears safe and supports further investigation of this potential therapy for use following SCI.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,G.F. Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jesse E Bucksot
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Hays
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
21
|
Järve A, Qadri F, Todiras M, Schmolke S, Alenina N, Bader M. Angiotensin-(1-7) Receptor Mas Deficiency Does Not Exacerbate Cardiac Atrophy Following High-Level Spinal Cord Injury in Mice. Front Physiol 2020; 11:203. [PMID: 32226394 PMCID: PMC7080696 DOI: 10.3389/fphys.2020.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Experimental spinal cord injury (SCI) causes a morphological and functional deterioration of the heart, in which the renin–angiotensin system (RAS) might play a role. The recently discovered non-canonical axis of RAS with angiotensin-(1–7) and its receptor Mas, which is associated with cardioprotection could be essential to prevent damage to the heart following SCI. We investigated the cardiac consequences of SCI and the role of Mas in female wild-type (WT, n = 22) and mice deficient of Mas (Mas–/–, n = 25) which underwent spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation by echocardiography (0, 7, 21, and 28 days post-SCI), histology and gene expression analysis at 1 or 2 months post-SCI. We found left ventricular mass reduction with preserved ejection fraction (EF) and fractional shortening in WT as well as Mas–/– mice. Cardiac output was reduced in Mas–/– mice, whereas stroke volume (SV) was reduced in WT T4-Tx mice. Echocardiographic indices did not differ between the genotypes. Smaller heart weight (HW) and smaller cardiomyocyte diameter at 1 month post-SCI compared to sham mice was independent of genotype. The muscle-specific E3 ubiquitin ligases Atrogin-1/MAFbx and MuRF1 were upregulated or showed a trend for upregulation in WT mice at 2 months post-SCI, respectively. Angiotensinogen gene expression was upregulated at 1 month post-SCI and angiotensin II receptor type 2 downregulated at 2 month post-SCI in Mas–/– mice. Mas was downregulated post-SCI. Cardiac atrophy following SCI, not exacerbated by lack of Mas, is a physiological reaction as there were no signs of cardiac pathology and dysfunction.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chişinãu, Moldova
| | - Shirley Schmolke
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Eldahan KC, Williams HC, Cox DH, Gollihue JL, Patel SP, Rabchevsky AG. Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury. Exp Neurol 2020; 323:113083. [DOI: 10.1016/j.expneurol.2019.113083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
|
23
|
Abstract
OBJECTIVE To examine differences in heart rate (HR) responses during international wheelchair rugby competition between athletes with and without a cervical spinal cord injury (SCI) and across standardized sport classifications. DESIGN Observational study. SETTING The 2015 Parapan American Games wheelchair rugby competition. PARTICIPANTS Forty-three male athletes (31 ± 8 years) with a cervical SCI (n = 32) or tetraequivalent impairment (non-SCI, n = 11). MAIN OUTCOME MEASURES Average and peak HR (HRavg and HRpeak, respectively). To characterize HR responses in accordance with an athletes' International Wheelchair Rugby Federation (IWRF) classification, we separated athletes into 3 groups: group I (IWRF classification 0.5-1.5, n = 15); group II (IWRF classification 2.0, n = 15); and group III (IWRF classification 2.5-3.5, n = 13). RESULTS Athletes with SCI had lower HRavg (111 ± 14 bpm vs 155 ± 13 bpm) and HRpeak (133 ± 12 bpm vs 178 ± 13 bpm) compared with non-SCI (both P < 0.001). Average HR was higher in group III than in I (136 ± 25 bpm vs 115 ± 20 bpm, P = 0.045); however, SCI athletes showed no difference in HRavg or HRpeak between groups. Within group III, SCI athletes had lower HRavg (115 ± 6 bpm vs 160 ± 8 bpm) and HRpeak (135 ± 11 bpm vs 183 ± 11 bpm) than non-SCI athletes (both P < 0.001). CONCLUSIONS This study is the first to demonstrate attenuated HR responses during competition in SCI compared with non-SCI athletes, likely due to injury to spinal autonomic pathways. Among athletes with SCI, IWRF classification was not related to differences in HR. Specific assessment of autonomic function after SCI may be able to predict HR during competition and consideration of autonomic impairments may improve the classification process.
Collapse
|
24
|
Shouman K, Benarroch EE. Segmental spinal sympathetic machinery: Implications for autonomic dysreflexia. Neurology 2019; 93:339-345. [PMID: 31308152 DOI: 10.1212/wnl.0000000000007973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Brakel K, Aceves AR, Aceves M, Hierholzer A, Nguyen QN, Hook MA. Depression-like behavior corresponds with cardiac changes in a rodent model of spinal cord injury. Exp Neurol 2019; 320:112969. [PMID: 31158357 DOI: 10.1016/j.expneurol.2019.112969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
Abstract
In previous studies we have shown that approximately 1/3 of male Sprague Dawley rats develop symptoms of depression following a spinal cord injury (SCI). Using established behavioral tests to measure depression in rodents, we found that after SCI, subjects characterized as depressed had decreased sucrose preference, open field activity, social exploration, and burrowing behavior. As some of these tests of depression could be affected by the compromised motor function inherent to the SCI condition, the current study examined whether non-subjective, physiological differences in heart rate and heart rate variability were also associated with depression, as seen in humans. Male Sprague Dawley rats were implanted with radiotelemetry devices and either received a moderate contusion injury or remained intact. The implanted telemetry devices recorded home cage activity, body temperature, heart rate, and heart rate variability for 5 min/h throughout a 30-day post-injury assessment period. Depression behavior was evaluated using a battery of tests conducted on days 9-10 and 19-20 post-injury. Locomotor recovery and pain reactivity were also examined. Hierarchical clustering, based on the behavioral scores collected on the tests of depression, revealed that 28% of the SCI subjects displayed symptoms of depression, relative to the remaining 72% of SCI subjects. The subjects characterized as depressed had significantly lower social interaction and burrowing activity than the group that was not depressed. Interestingly, the subjects behaviorally characterized as depressed also had significantly lower heart rate variability than the not-depressed intact group. There was no difference between not-depressed SCI and intact rats on this measure. Therefore, in addition to behavior, depressed and not-depressed rats differ on measures of physiological function that are associated with depression in humans. These physiological differences further validate the rodent model of depression after SCI.
Collapse
Affiliation(s)
- Kiralyn Brakel
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education Building, Texas A&M University, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States; Texas A&M Institute of Neuroscience, Interdisciplinary Life Sciences Building, Texas A&M University, Rm 3148, 3474 TAMU, College Station, TX, United States.
| | - Alejandro R Aceves
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education Building, Texas A&M University, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States
| | - Miriam Aceves
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education Building, Texas A&M University, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States; Texas A&M Institute of Neuroscience, Interdisciplinary Life Sciences Building, Texas A&M University, Rm 3148, 3474 TAMU, College Station, TX, United States
| | - Ashton Hierholzer
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education Building, Texas A&M University, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States
| | - Quynh-Nhu Nguyen
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education Building, Texas A&M University, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States
| | - Michelle A Hook
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education Building, Texas A&M University, Ste. 1005, 8447 Riverside Pkwy, Bryan, TX 77807, United States; Texas A&M Institute of Neuroscience, Interdisciplinary Life Sciences Building, Texas A&M University, Rm 3148, 3474 TAMU, College Station, TX, United States
| |
Collapse
|
26
|
Silver JR, Weiner MF. The history of the use of intrathecal prostigmine to achieve fertility in men with spinal cord injuries. Spinal Cord Ser Cases 2019; 5:37. [PMID: 31632698 PMCID: PMC6786382 DOI: 10.1038/s41394-019-0183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- J. R. Silver
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Aylesbury, UK
| | | |
Collapse
|
27
|
Harman KA, States G, Wade A, Stepp C, Wainwright G, DeVeau K, King N, Shum-Siu A, Magnuson DSK. Temporal analysis of cardiovascular control and function following incomplete T3 and T10 spinal cord injury in rodents. Physiol Rep 2019; 6:e13634. [PMID: 29595874 PMCID: PMC5875543 DOI: 10.14814/phy2.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that results in whole‐body dysfunction, notably cardiovascular (CV) disruption and disease. Injury‐induced destruction of autonomic pathways in conjunction with a progressive decline in physical fitness contribute to the poor CV status of SCI individuals. Despite the wide use of exercise training as a therapeutic option to reduce CV dysfunction, little is known about the acute hemodynamic responses to the exercise itself. We investigated CV responses to an exercise challenge (swimming) following both high and low thoracic contusion to determine if the CV system is able to respond appropriately to the challenge of swimming. Blood pressure (BP) telemetry and echocardiography were used to track the progression of dysfunction in rodents with T3 and T10 SCI (n = 8 each) for 10 weeks postcontusion. At 1 week postinjury, all animals displayed a drastic decline in heart rate (HR) during the exercise challenge, likely a consequence of neurogenic shock. Furthermore, over time, all groups developed a progressive inability to maintain BP within a narrow range during the exercise challenge despite displaying normal hemodynamic parameters at rest. Echocardiography of T10 animals revealed no persistent signs of cardiac dysfunction; T3 animals exhibited a transient decline in systolic function that returned to preinjury levels by 10 weeks postinjury. Novel evidence provided here illustrates that incomplete injuries produce hemodynamic instability that only becomes apparent during an exercise challenge. Further, this dysfunction lasts into the chronic phase of disease progression despite significant recovery of hindlimb locomotion and cardiac function.
Collapse
Affiliation(s)
- Kathryn A Harman
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gregory States
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Abigail Wade
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Chad Stepp
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Grace Wainwright
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Kathryn DeVeau
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Nicholas King
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Alice Shum-Siu
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David S K Magnuson
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| |
Collapse
|
28
|
Sharif H, La Fountaine MF, Wecht JM, Ditor DS. A call to reevaluate cardiac autonomic assessment after spinal cord injury. Am J Physiol Heart Circ Physiol 2018; 315:H1088-H1090. [PMID: 30141980 DOI: 10.1152/ajpheart.00453.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This "Perspectives" article puts forward the notion that measuring heart rate variability, or other forms of cardiac autonomic regulation, after spinal cord injury must be performed during a test of autonomic stress. Resting values of heart rate variability are often similar to those obtained from able-bodied individuals, which may therefore be falsely interpreted as normal or healthy autonomic regulation. However, evidence shows that despite normal resting values, cardiac autonomic control is impaired when individual with spinal cord injury are subjected to a cold face test, head-up tilt, or recovery from exercise. Accordingly, examination of cardiac autonomic function must be performed during an autonomic challenge, as resting measures do not accurately reflect the state of cardiovascular regulation after spinal cord injury and can provide false information.
Collapse
Affiliation(s)
- Hisham Sharif
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine , New York.,Department of Kinesiology, Brock Univeristy, St. Catharines, Ontario, Canada
| | - Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey.,Departments of Medical Sciences and Neurology, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersy
| | - Jill M Wecht
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - David S Ditor
- Department of Kinesiology, Brock Univeristy, St. Catharines, Ontario, Canada
| |
Collapse
|
29
|
Trbovich M, Li C, Lee S. Does the CDC Definition of Fever Accurately Predict Inflammation and Infection in Persons With SCI? Top Spinal Cord Inj Rehabil 2018; 22:260-268. [PMID: 29339867 DOI: 10.1310/sci2016-00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background: Pneumonia and septicemia have the greatest impact on reduced life expectancy in persons with spinal cord injury (SCI). Fever is often the first presenting symptom of infection or inflammation. Thermoregulatory dysfunction in persons with SCI may preclude a typical febrile response to infection or inflammation and thus delay diagnostic workup. Objective: To determine the core temperature of persons with SCI in the setting of infection or inflammation and the frequency with which it meets criteria for the CDC definition of fever (>100.4°F). Methods: Retrospective review of hospitalized SCI patients over 5 years with a diagnosis of infection or inflammation (DI), defined by serum leukocytosis. In this study, 458 persons with paraplegia (PP) and 483 persons with tetraplegia (TP) had 4,191 DI episodes. Aural temperatures (Tau) on the day of DI, 7 days prior, and 14 days afterwards were abstracted from medical records. Main outcome measures were average Tau at DI, frequency of temperatures >100.4°F at DI, and average baseline temperatures before and after DI. Results: Average Tau at DI was 98.2°F (±1.5) and 98.2°F (±1.4) in the TP and PP groups, respectively, with only 11.6% to 14% of DI resulting in Tau >100.4°F. Baseline temperatures ranged from 97.9°F (±0.7) to 98.0°F (±0.8). Conclusion: SCI persons with leukocytosis infrequently mount a fever as defined by the CDC, and baseline temperatures were subnormal (<98.6°F). Thermoregulatory dysfunction likely accounts for these findings. Tau >100.4°F is not a sensitive predictor of infection or inflammation in persons with SCI. Clinicians should be vigilant for alternative symptoms of infection and inflammation in these patients, so diagnostic workup is not delayed.
Collapse
Affiliation(s)
| | - Carol Li
- Audie L. Murphy VA, San Antonio, Texas
| | - Shuko Lee
- Audie L. Murphy VA, San Antonio, Texas
| |
Collapse
|
30
|
Biering-Sørensen F, Biering-Sørensen T, Liu N, Malmqvist L, Wecht JM, Krassioukov A. Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci 2018; 209:4-18. [DOI: 10.1016/j.autneu.2017.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
|
31
|
Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J Neurotrauma 2017; 35:446-451. [PMID: 28967294 PMCID: PMC5793952 DOI: 10.1089/neu.2017.5082] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite autonomic dysfunction after spinal cord injury (SCI) being the major cause of death and a top health priority, the clinical management options for these conditions are limited to drugs with delayed onset and nonpharmacological interventions with equivocal effectiveness. We tested the capacity of electrical stimulation, applied transcutaneously over the spinal cord, to manage autonomic dysfunction in the form of orthostatic hypotension after SCI. We assessed beat-by-beat blood pressure (BP), stroke volume, and cardiac contractility (dP/dt; Finometer), as well as cerebral blood flow (transcranial Doppler) in 5 individuals with motor-complete SCI (4 cervical, 1 thoracic) during an orthostatic challenge with and without transcutaneous electrical stimulation applied at the TVII level. During the orthostatic challenge, all individuals experienced hypotension characterized by a 37 ± 4 mm Hg decrease in systolic BP, a 52 ± 10% reduction in cardiac contractility, and a 23 ± 6% reduction in cerebral blood flow (all p < 0.05), along with severe self-reported symptoms. Electrical stimulation completely normalized BP, cardiac contractility, cerebral blood flow, and abrogated all symptoms. Noninvasive transcutaneous electrical spinal cord stimulation may be a viable therapy for restoring autonomic cardiovascular control after SCI.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Dimitry G Sayenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - V Reggie Edgerton
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,3 Neurobiology, University of California , Los Angeles, Los Angeles, California.,4 Department of Neurosurgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California.,5 Brain Research Institute, University of California , Los Angeles, Los Angeles, California
| | - Yury Gerasimenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,6 Pavlov Institute of Physiology , Saint-Petersburg, Russia
| | - Andrei V Krassioukov
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Sankari A, Martin JL, Badr MS. Sleep Disordered Breathing and Spinal Cord Injury: Challenges and Opportunities. CURRENT SLEEP MEDICINE REPORTS 2017; 3:272-278. [PMID: 29177130 DOI: 10.1007/s40675-017-0093-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose of review This paper focuses on the sleep disorders in patients with spinal cord injury (SCI/D), particularly mechanism of sleep disordered breathing (SDB) and challenges in diagnosis and management. Based on a review of recent literatures and studies the paper summarizes some main challenges with respect to management of SDB in patients with SCI; and what are the responsible mechanisms of disease? What are the barriers in diagnosing and treating SDB using standard treatment such as positive airway pressure (CPAP)?. Recent findings Previous studies have shown that most SCI/D patients have SDB with heterogeneity in prevalence mainly related to using different definition or methods of diagnosing SDB, while recent studies using new definition of SDB based on recommended criteria from the American Academy of Sleep Medicine (AASM) and also include the data on effect of SCI/D level on prevalence and describe different type of SDB. Furthermore, recent data describes simplified method of diagnosing SDB by using a combination of home sleep apnea testing and transcutaneous CO2 monitoring. Finally, emerging data has been pointing at strong relationship between SDB and cardiovascular disease including nocturnal hypertension in patients with SCI/D. Summary The findings indicate that early testing for SDB and associated cardiovascular disease in patients with SCI is recommended and could be beneficial in reduced the high morbidity and mortality in this group of patients with disability. In addition, studies on treatment of other sleep disorders in SCI/D are not available to inform clinical decision making. Understanding the pathophysiology of sleep disorders in SCI/D is critical for the development of new effective therapies. This review provides evidence for best practices; highlights new discoveries for the diagnosis and management of sleep disorders in SCI/D, and discuss challenges and future directions.
Collapse
Affiliation(s)
- Abdulghani Sankari
- John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Jennifer L Martin
- VA Greater Los Angeles Healthcare System, North Hills, CA, USA.,David Geffen School of Medicine at the University of California, Los Angeles
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
33
|
Ondrusova K, Svacinova J, Javorka M, Novak J, Novakova M, Novakova Z. Impaired Baroreflex Function during Orthostatic Challenge in Patients after Spinal Cord Injury. J Neurotrauma 2017; 34:3381-3387. [PMID: 28605971 DOI: 10.1089/neu.2017.4989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The level of spinal cord injury (SCI) affects baroreflex regulation of blood pressure. While a parasympathetic cardiac chronotropic effect is preserved, baroreflex response could be impaired by sympathetic dysfunction under the SCI level. This study was aimed to evaluate the baroreflex function in SCI patients by the analysis of causal interaction between systolic blood pressure (SBP) and inter-beat intervals (IBI). Blood pressure was continuously recorded in 13 cervical SCI patients (CSCI), nine thoracic SCI (ThSCI) and 13 able-bodied controls (Con) during two phases: sitting (PS) and orthostatic challenge (PO). Beat-to-beat SBP and IBI sequences were obtained from continuous blood pressure recording. Closed loop of SBP-IBI interaction was mathematically opened by bivariate autoregressive model; causal coherence and baroreflex sensitivity (BRS) were calculated in baroreflex direction. Coherence quantifies causal synchronicity between SBP and IBI. The gain of transfer function from SBP to IBI represents BRS. PS (medians of CSCI/ThSCI/Con) coherence was 0.28/0.33/0.25 (no significant difference) and PS BRS was 6.98/7.54/6.66 (no difference). PO coherence was 0.18/0.58/0.45 (CSCI < ThCSI and Con; p < 0.01) and PO BRS was 2.38/5.87/6.22 (CSCI < ThCSI and Con; p < 0.01). For position change effect, there was no change in CSCI coherence; for ThSCI and Con, PS < PO (p < 0.05). For BRS in the CSCI group, PS < PO (p < 0.01); for ThSCI and Con, there was no change. BRS and coherence correlated negatively with SCI level (p < 0.01). In conclusion, baroreflex dysfunction in SCI patients was detected using causal analysis methods during orthostatic challenge only. Baroreflex dysfunction is probably an important mechanism of the more expressed blood pressure decrease associated with CSCI. The severity of autonomic dysfunction was related to SCI level.
Collapse
Affiliation(s)
| | - Jana Svacinova
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic
| | - Michal Javorka
- 2 Department of Physiology, Comenius University in Bratislava , Martin, Slovakia .,3 Biomedical Center Martin, Comenius University in Bratislava , Martin, Slovakia
| | - Jan Novak
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic
| | - Marie Novakova
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic .,4 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Zuzana Novakova
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic
| |
Collapse
|
34
|
Draghici AE, Taylor JA. Baroreflex autonomic control in human spinal cord injury: Physiology, measurement, and potential alterations. Auton Neurosci 2017; 209:37-42. [PMID: 28844537 DOI: 10.1016/j.autneu.2017.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/27/2022]
Abstract
The arterial baroreflex is a primary regulator of autonomic outflow to effectively regulate acute changes in blood pressure. After a spinal cord injury (SCI), regulation of autonomic function is disrupted, although the damage of the autonomic pathways may not necessarily be related to the severity of injury (i.e. level and completeness). Nonetheless, it can be assumed that there would be greater loss of sympathetic innervation with higher level of injury and that cardiac parasympathetic control would remain intact regardless of injury level. In those with SCI, impaired baroreflex regulation has implications not only for adequate pressure regulation, but also for long term cardiovascular health. In this review, we discuss the expected impact ofan SCI on baroreflex control and the studies that have investigated baroreflex sensitivity in this population. The data generally indicates that baroreflex sensitivity is lesser in those with chronic injuries. However, these findings are counter to the expected effect of an SCI and hence may indicate that the effect of an SCI on baroreflex control might be secondary to long term deconditioning and/or vascular stiffening of baroreceptive arteries. Furthermore, the alterations in the ability to regulate pressure do not impact the relationship between spontaneous heart rate and blood pressure variabilities. In addition, those with SCI are not adequately able to control blood pressure changes in response to orthostasis, resulting in frank hypotension in a significant proportion of those with high level injuries.
Collapse
Affiliation(s)
- Adina E Draghici
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States; Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA, United States.
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States; Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA, United States
| |
Collapse
|
35
|
Nier LM, Hansen PS. Coronary artery disease presenting with left upper quadrant pain in a patient with chronic cervical tetraplegia. Spinal Cord Ser Cases 2017; 3:17048. [PMID: 28765791 DOI: 10.1038/scsandc.2017.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION This single-subject case report aims to describe and discuss a case of a patient with established C5 tetraplegia with acute coronary syndrome presenting with left upper quadrant pain and tenderness. CASE PRESENTATION A 65-year-old male with chronic C5 American Spinal Injury Association Impairment Scale (AIS) A tetraplegia presented to the emergency department with severe left upper quadrant pain radiating across the chest to the right upper limb with associated dyspnoea and diaphoresis. Prior to his emergency department admission, he had experienced progressive worsening of left upper quadrant pain and tenderness over several months. He was a non-smoker and swam regularly. He underwent coronary angiography and was found to have significant coronary artery disease. Drug-eluting stents were placed to critical coronary artery lesions followed by an uneventful hospital course with complete symptom resolution and discharge home. DISCUSSION Patients with tetraplegia are known to have higher rates of cardiovascular disease compared to ambulatory patients. Their cardiovascular risk profile may include atypical risk factors, for example, sleep disordered breathing, relative immobility and autonomic dysfunction. A high index of suspicion for cardiac pathology is warranted in those with cervical tetraplegia with persistent 'atypical' symptoms, including within the abdomen (especially when no specific abdominal organ dysfunction is evident). Sleep apnoea and significantly impaired mobility are potential cardiac risk factors in this patient group and should alert the emergency physician to cardiac disease (as in this case) irrespective of their complex past medical history and symptomatology.
Collapse
Affiliation(s)
- Lianne Michelle Nier
- Department of Spinal Cord Injury Rehabilitation, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter S Hansen
- Department of Cardiology, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
36
|
Lee AHX, Phillips AA, Krassioukov AV. Increased Central Arterial Stiffness after Spinal Cord Injury: Contributing Factors, Implications, and Possible Interventions. J Neurotrauma 2017; 34:1129-1140. [DOI: 10.1089/neu.2016.4694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Amanda H. X. Lee
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A. Phillips
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Al Dera H, Brock JA. Changes in sympathetic neurovascular function following spinal cord injury. Auton Neurosci 2017; 209:25-36. [PMID: 28209424 DOI: 10.1016/j.autneu.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
The effects of spinal cord injury (SCI) on sympathetic neurovascular transmission have generally been ignored. This review describes changes in sympathetic nerve-mediated activation of arterial vessels to which ongoing sympathetic activity has been reduced or silenced following spinal cord transection in rats. In all vessels studied in rats, SCI markedly enhanced their contractile responses to nerve activity. However, the mechanisms that augment neurovascular transmission differ between the rat tail artery and mesenteric artery. In tail artery, the enhancement of neurovascular transmission cannot be attributed to changes in sensitivity of the vascular muscle to α1- or α2-adrenoceptor agonists. Instead the contribution of L-type Ca2+ channels to activation of the smooth muscle by nerve-released noradrenaline is greatly increased following SCI. By contrast, mesenteric arteries from SCI rats had increased sensitivity to phenylephrine but not to methoxamine. While both phenylephrine and methoxamine are α1-adrenoceptor agonists, only phenylephrine is a substrate for the neuronal noradrenaline transporter. Therefore the selective increase in sensitivity to phenylephrine suggests that the activity of the neuronal noradrenaline transporter is reduced. While present evidence suggests that sympathetic vasoconstrictor neurons do not contribute to the normal regulation of peripheral resistance below a complete SCI in humans, the available evidence does indicate that these experimental findings in animals are likely to apply after SCI in humans and contribute to autonomic dysreflexia.
Collapse
Affiliation(s)
- Hussain Al Dera
- Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - James A Brock
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
38
|
Besecker EM, Deiter GM, Pironi N, Cooper TK, Holmes GM. Mesenteric vascular dysregulation and intestinal inflammation accompanies experimental spinal cord injury. Am J Physiol Regul Integr Comp Physiol 2017; 312:R146-R156. [PMID: 27834292 PMCID: PMC5283935 DOI: 10.1152/ajpregu.00347.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 01/23/2023]
Abstract
Cervical and high thoracic spinal cord injury (SCI) drastically impairs autonomic nervous system function. Individuals with SCI at thoracic spinal level 5 (T5) or higher often present cardiovascular disorders that include resting systemic arterial hypotension. Gastrointestinal (GI) tissues are critically dependent upon adequate blood flow and even brief periods of visceral hypoxia triggers GI dysmotility. The aim of this study was to test the hypothesis that T3-SCI induces visceral hypoperfusion, diminished postprandial vascular reflexes, and concomitant visceral inflammation. We measured in vivo systemic arterial blood pressure and superior mesenteric artery (SMA) and duodenal blood flow in anesthetized T3-SCI rats at 3 days and 3 wk postinjury either fasted or following enteral feeding of a liquid mixed-nutrient meal (Ensure). In separate cohorts of fasted T3-SCI rats, markers of intestinal inflammation were assayed by qRT-PCR. Our results show that T3-SCI rats displayed significantly reduced SMA blood flow under all experimental conditions (P < 0.05). Specifically, the anticipated elevation of SMA blood flow in response to duodenal nutrient infusion (postprandial hyperemia) was either delayed or absent after T3-SCI. The dysregulated SMA blood flow in acutely injured T3-SCI rats coincides with abnormal intestinal morphology and elevation of inflammatory markers, all of which resolve after 3 wk. Specifically, Icam1, Ccl2 (MCP-1), and Ccl3 (MIP-1α) were acutely elevated following T3-SCI. Our data suggest that arterial hypotension diminishes mesenteric blood flow necessary to meet mucosal demands at rest and during digestion. The resulting GI ischemia and low-grade inflammation may be an underlying pathology leading to GI dysfunction seen following acute T3-SCI.
Collapse
Affiliation(s)
- Emily M Besecker
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania
| | - Gina M Deiter
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Nicole Pironi
- Department of Biology, Muhlenberg College, Allentown, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania Hershey, Pennsylvania; and
| | - Gregory M Holmes
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania;
| |
Collapse
|
39
|
Smith DL, Yarar-Fisher C. Contributors to Metabolic Disease Risk Following Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016; 4:190-199. [PMID: 29276654 PMCID: PMC5737009 DOI: 10.1007/s40141-016-0124-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spinal cord injury (SCI) induced changes in neurological function have significant impact on the metabolism and subsequent metabolic-related disease risk in injured individuals. This metabolic-related disease risk relationship is differential depending on the anatomic level and severity of the injury, with high level anatomic injuries contributing a greater risk of glucose and lipid dysregulation resulting in type 2 diabetes and cardiovascular disease risk elevation. Although alterations in body composition, particularly excess adiposity and its anatomical distribution in the visceral depot or ectopic location in non-adipose organs, is known to significantly contribute to metabolic disease risk, changes in fat mass and fat-free mass do not fully account for this elevated disease risk in subjects with SCI. There are other negative adaptations in body composition including reductions in skeletal muscle mass and alterations in muscle fiber type, in addition to significant reduction in physical activity, that contribute to a decline in metabolic rate and increased metabolic disease risk following SCI. Recent studies in adult humans suggest cold- and diet-induced thermogenesis through brown adipose tissue metabolism may be important for energy balance and substrate metabolism, and particularly sensitive to sympathetic nervous signaling. Considering the alterations that occur in the autonomic nervous system (SNS) (sympathetic and parasympathetic) following a SCI, significant dysfunction of brown adipose function is expected. This review will highlight metabolic alterations following SCI and integrate findings from brown adipose tissue studies as potential new areas of research to pursue.
Collapse
Affiliation(s)
- Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Ceren Yarar-Fisher
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| |
Collapse
|
40
|
Walter M, Knüpfer SC, Leitner L, Mehnert U, Schubert M, Curt A, Kessler TM. Autonomic dysreflexia and repeatability of cardiovascular changes during same session repeat urodynamic investigation in women with spinal cord injury. World J Urol 2015; 34:391-7. [PMID: 26055644 DOI: 10.1007/s00345-015-1589-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To investigate autonomic dysreflexia (AD) and repeatability of cardiovascular changes during same session repeat urodynamic investigation (UDI) in women with spinal cord injury (SCI). METHODS Prospective investigation of 33 consecutive women with suprasacral SCI suffering from neurogenic lower urinary tract dysfunction (NLUTD) undergoing same session repeat UDI and synchronous continuous cardiovascular monitoring [systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR)]. UDIs were performed according to the International Continence Society guidelines. AD was defined according to the International Standards to document remaining Autonomic Function after SCI. Neurological level of SCI was determined using the American Spinal Injury Association impairment scale. RESULTS Mean age and duration since SCI of the 33 women were 58 ± 19 and 6 ± 11 years, respectively. Overall AD incidence was 73 % (24/33), and 19 of the 33 women (58 %) showed AD in both UDIs. The repeatability of detecting AD between the two same session UDIs was good (κ = 0.67, 95 % CI 0.4-0.94). When applying the Bland and Altman method, wide 95 % limits of agreement for differences in same session SBP, DBP and HR indicated poor repeatability. There was a significant increase in SBP (p < 0.001) and DBP (p < 0.001) and a significant decrease in HR (p = 0.007) in patients with compared to those without AD. CONCLUSIONS In all women with NLUTD due to suprasacral SCI, we strongly recommend continuous cardiovascular monitoring during UDI and repeat measurements considering the high incidence of AD, the relevant risks involved with sudden hypertension and the poor repeatability of cardiovascular monitoring.
Collapse
Affiliation(s)
- Matthias Walter
- Neuro-Urology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Stephanie C Knüpfer
- Neuro-Urology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Lorenz Leitner
- Neuro-Urology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Ulrich Mehnert
- Neuro-Urology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Martin Schubert
- Neurology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Armin Curt
- Neurology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Thomas M Kessler
- Neuro-Urology, Spinal Cord Injury Center and Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland.
| |
Collapse
|
41
|
Courtois F, Charvier K. Sexual dysfunction in patients with spinal cord lesions. HANDBOOK OF CLINICAL NEUROLOGY 2015; 130:225-45. [PMID: 26003247 DOI: 10.1016/b978-0-444-63247-0.00013-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many aspects of sexuality can be disrupted following a spinal cord lesion (SCL). It can alter an individual's self-esteem and body image, interfere with positioning and mobility, introduce unexpected problems with incontinence and spasticity, decrease pleasure, and delay orgasm. Sexual concerns in men can involve erectile function, essential for intercourse, ejaculation function, necessary for fertility, and the ability to reach orgasm. In women they can involve concerns with vaginal lubrication, genital congestion, and vaginal infections, which can all go unnoticed, and orgasm, which may be lost. All of these concerns must be addressed during rehabilitation as individuals with SCL continue to live an active sexual life, and consider sexuality among their top priority for quality of life. This chapter describes the impact of SCL on various phases of men's and women's sexual responses and on various aspects of sexuality. Treatments are described in terms of what is currently available and what is specific to the SCL population. New approaches in particular for women are described, along with tips from sexual counseling which consider an overall approach, taking into account the primary, secondary, and tertiary consequences of the SCL on the individual's sexuality. Throughout the chapter, attempts are made to integrate neurophysiologic knowledge, findings from the literature on SCL, and clinical experience in sexual rehabilitation.
Collapse
Affiliation(s)
- Frédérique Courtois
- Department of Sexology, Université du Québec à Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
42
|
Sisto SA, Evans N. Activity and Fitness in Spinal Cord Injury: Review and Update. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2014. [DOI: 10.1007/s40141-014-0057-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Hector SM, Biering-Sørensen T, Krassioukov A, Biering-Sørensen F. Cardiac arrhythmias associated with spinal cord injury. J Spinal Cord Med 2013; 36:591-9. [PMID: 24090076 PMCID: PMC3831320 DOI: 10.1179/2045772313y.0000000114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CONTEXT/OBJECTIVES To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). DATA SOURCE MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. RESULTS In the acute phase of SCI (1-14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus describing the chronic phase of SCI, showed that individuals with SCI did not have a higher incidence of cardiac arrhythmias compared with able-bodied controls. Furthermore, their heart rate did not differ significantly. Penile vibro-stimulation was the procedure investigated most likely to cause bradycardia, which in turn was associated with episodes of autonomic dysreflexia. The incidence of bradycardia was found to be 17-77% for individuals with cervical SCI. For individuals with thoracolumbar SCI, the incidence was 0-13%. CONCLUSION Bradycardia was commonly seen in the acute stage after SCI as well as during procedures such as penile vibro-stimulation and tracheal suction. These episodes of bradycardia were seen more often in individuals with cervical injuries. Longitudinal studies with continuous electrocardiogram recordings are needed to uncover the true relation between cardiac arrhythmias and SCI.
Collapse
Affiliation(s)
- Sven Magnus Hector
- Clinic for Spinal Cord Injuries, Glostrup University Hospital, Copenhagen, Denmark,Correspondence to: Sven Magnus Hector, Clinic for Spinal Cord Injuries, Glostrup University Hospital, Nordre Ringvej 57, DK-2600, Glostrup, Denmark.
| | - Tor Biering-Sørensen
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark; and Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Andrei Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia and Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Fin Biering-Sørensen
- Clinic for Spinal Cord Injuries, Glostrup University Hospital, Copenhagen, Denmark; and Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|