1
|
Nagarajan L, Ghosh S. Status epilepticus in the neonate. BMJ Paediatr Open 2025; 9:e003202. [PMID: 40121015 PMCID: PMC11931914 DOI: 10.1136/bmjpo-2024-003202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Status epilepticus in the neonate (NSE) is a medical emergency that often results in dire consequences. Minimising injury from NSE is essential. The diagnosis of NSE can be challenging as neonates frequently have electrographic only seizures and an EEG is essential for recognition of seizures and seizure burden. The lack of a universally accepted definition of NSE, possible adverse effects from commonly used antiseizure medications, debate regarding the best treatment packages for NSE, limited access to EEG and investigations for aetiology of NSE add to the clinical conundrum. In this review, we aim to present what is known, highlight the importance of EEG monitoring for diagnosis and treatment, discuss what is not known and suggest a practical paradigm for the management of NSE.
Collapse
Affiliation(s)
- Lakshmi Nagarajan
- Neurology, Perth Children's Hospital, NEDLANDS, Western Australia, Australia
- Paediatrics, University of Western Australia, NEDLANDS, Western Australia, Australia
| | - Soumya Ghosh
- Neurology, Perth Children's Hospital, NEDLANDS, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
Miller SL, Bennet L, Sutherland AE, Pham Y, McDonald C, Castillo‐Melendez M, Allison BJ, Mihelakis J, Nitsos I, Boyd BJ, Hirst JJ, Walker DW, Hunt RW, Jenkin G, Wong F, Malhotra A, Fahey MC, Yawno T. Ganaxolone versus Phenobarbital for Neonatal Seizure Management. Ann Neurol 2022; 92:1066-1079. [PMID: 36054160 PMCID: PMC9828769 DOI: 10.1002/ana.26493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.
Collapse
Affiliation(s)
- Suzanne L. Miller
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Amy E. Sutherland
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Yen Pham
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Courtney McDonald
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Margie Castillo‐Melendez
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Beth J. Allison
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Jamie Mihelakis
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Ilias Nitsos
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Ben J. Boyd
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleNewcastleNew South WalesAustralia
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT UniversityBundooraVictoriaAustralia
| | - Rodney W. Hunt
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Graham Jenkin
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Flora Wong
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,School of Health and Biomedical Sciences, RMIT UniversityBundooraVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Atul Malhotra
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia,Monash Children's HospitalClaytonVictoriaAustralia
| | - Michael C. Fahey
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia,Monash Children's HospitalClaytonVictoriaAustralia
| | - Tamara Yawno
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
3
|
Mareš P, Kozlová L, Mikulecká A, Kubová H. The GluN2B-Selective Antagonist Ro 25-6981 Is Effective against PTZ-Induced Seizures and Safe for Further Development in Infantile Rats. Pharmaceutics 2021; 13:pharmaceutics13091482. [PMID: 34575558 PMCID: PMC8469742 DOI: 10.3390/pharmaceutics13091482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
The GluN2B subunit of NMDA receptors represents a perspective therapeutic target in various CNS pathologies, including epilepsy. Because of its predominant expression in the immature brain, selective GluN2B antagonists are expected to be more effective early in postnatal development. The aim of this study was to identify age-dependent differences in the anticonvulsant activity of the GluN2B-selective antagonist Ro 25-6981 and assess the safety of this drug for the developing brain. Anticonvulsant activity of Ro 25-6981 (1, 3, and 10 mg/kg) was tested in a pentylenetetrazol (PTZ) model in infantile (12-day-old, P12) and juvenile (25-day-old, P25) rats. Ro 25-6981 (1 or 3 mg/kg/day) was administered from P7 till P11 to assess safety for the developing brain. Animals were then tested repeatedly in a battery of behavioral tests focusing on sensorimotor development, cognition, and emotionality till adulthood. Effects of early exposure to Ro 25-6981 on later seizure susceptibility were tested in the PTZ model. Ro 25-6981 was effective against PTZ-induced seizures in infantile rats, specifically suppressing the tonic phase of the generalized tonic-clonic seizures, but it failed in juveniles. Neither sensorimotor development nor cognitive abilities and emotionality were affected by early-life exposure to Ro 25-6981. Treatment cessation did not affect later seizure susceptibility. Our data are in line with the maturational gradient of the GluN2B-subunit of NMDA receptors and demonstrate developmental differences in the anti-seizure activity of the GluN2B-selective antagonist and its safety for the developing brain.
Collapse
Affiliation(s)
- Pavel Mareš
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
- Department of Rehabilitation and Sport Medicine, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic
| | - Lucie Kozlová
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
- Department of Rehabilitation and Sport Medicine, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic
| | - Anna Mikulecká
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
| | - Hana Kubová
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
- Correspondence:
| |
Collapse
|
4
|
Yawno T, Miller SL, Bennet L, Wong F, Hirst JJ, Fahey M, Walker DW. Ganaxolone: A New Treatment for Neonatal Seizures. Front Cell Neurosci 2017; 11:246. [PMID: 28878622 PMCID: PMC5572234 DOI: 10.3389/fncel.2017.00246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal seizures are amongst the most common neurologic conditions managed by a neonatal care service. Seizures can exacerbate existing brain injury, induce “de novo” injury, and are associated with neurodevelopmental disabilities in post-neonatal life. In this mini-review, we present evidence in support of the use of ganaxolone, a GABAA agonist neurosteroid, as a novel neonatal therapy. We discuss evidence that ganaxolone can provide both seizure control and neuroprotection with a high safety profile when administered early following birth-related hypoxia, and show evidence that it is likely to prevent or reduce the incidence of the enduring disabilities associated with preterm birth, cerebral palsy, and epilepsy. We suggest that ganaxolone is an ideal anti-seizure treatment because it can be safely used prospectively, with minimal or no adverse effects on the neonatal brain.
Collapse
Affiliation(s)
- Tamara Yawno
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Suzie L Miller
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of AucklandAuckland, New Zealand
| | - Flora Wong
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - David W Walker
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,School of Health and Biomedical Sciences, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|
5
|
Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res 2017; 42:1873-1888. [PMID: 28290134 DOI: 10.1007/s11064-017-2222-z] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
The identification of potential therapeutic agents for the treatment of epilepsy requires the use of seizure models. Except for some early treatments, including bromides and phenobarbital, the antiseizure activity of all clinically used drugs was, for the most part, defined by acute seizure models in rodents using the maximal electroshock and subcutaneous pentylenetetrazole seizure tests and the electrically kindled rat. Unfortunately, the clinical evidence to date would suggest that none of these models, albeit useful, are likely to identify those therapeutics that will effectively manage patients with drug resistant seizures. Over the last 30 years, a number of animal models have been developed that display varying degrees of pharmacoresistance, such as the phenytoin- or lamotrigine-resistant kindled rat, the 6-Hz mouse model of partial seizures, the intrahippocampal kainate model in mice, or rats in which spontaneous recurrent seizures develops after inducing status epilepticus by chemical or electrical stimulation. As such, these models can be used to study mechanisms of drug resistance and may provide a unique opportunity for identifying a truly novel antiseizure drug (ASD), but thus far clinical evidence for this hope is lacking. Although animal models of drug resistant seizures are now included in ASD discovery approaches such as the ETSP (epilepsy therapy screening program), it is important to note that no single model has been validated for use to identify potential compounds for as yet drug resistant seizures, but rather a battery of such models should be employed, thus enhancing the sensitivity to discover novel, highly effective ASDs. The present review describes the previous and current approaches used in the search for new ASDs and offers some insight into future directions incorporating new and emerging animal models of therapy resistance.
Collapse
|
6
|
Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016; 126:157-84. [PMID: 27505294 DOI: 10.1016/j.eplepsyres.2016.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Animal seizure and epilepsy models continue to play an important role in the early discovery of new therapies for the symptomatic treatment of epilepsy. Since 1937, with the discovery of phenytoin, almost all anti-seizure drugs (ASDs) have been identified by their effects in animal models, and millions of patients world-wide have benefited from the successful translation of animal data into the clinic. However, several unmet clinical needs remain, including resistance to ASDs in about 30% of patients with epilepsy, adverse effects of ASDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk following brain injury. The aim of this review is to critically discuss the translational value of currently used animal models of seizures and epilepsy, particularly what animal models can tell us about epilepsy therapies in patients and which limitations exist. Principles of translational medicine will be used for this discussion. An essential requirement for translational medicine to improve success in drug development is the availability of animal models with high predictive validity for a therapeutic drug response. For this requirement, the model, by definition, does not need to be a perfect replication of the clinical condition, but it is important that the validation provided for a given model is fit for purpose. The present review should guide researchers in both academia and industry what can and cannot be expected from animal models in preclinical development of epilepsy therapies, which models are best suited for which purpose, and for which aspects suitable models are as yet not available. Overall further development is needed to improve and validate animal models for the diverse areas in epilepsy research where suitable fit for purpose models are urgently needed in the search for more effective treatments.
Collapse
|
7
|
Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods 2015; 260:2-25. [PMID: 26376175 DOI: 10.1016/j.jneumeth.2015.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/31/2023]
Abstract
Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs).
Collapse
|
8
|
Stafstrom CE, Benke TA. Autism and Epilepsy: Exploring the Relationship Using Experimental Models. Epilepsy Curr 2015; 15:206-10. [PMID: 26316869 PMCID: PMC4532234 DOI: 10.5698/1535-7511-15.4.206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common co-occurrence of autism and epilepsy suggests that certain neurobiological mechanisms are shared between these disorders. In particular, the profusion of novel genetic mutations being discovered in autism and epilepsy points to abnormalities in synapse formation and function that alter the balance between neuronal excitation and inhibition. Animal models can be informative in sorting out the medical and behavioral complexities in autism and epilepsy and the relationship between them. As mechanistic information accrues, it is anticipated that mutation- and pathway-specific targeted treatments can be developed.
Collapse
Affiliation(s)
- Carl E. Stafstrom
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tim A. Benke
- Division of Pediatric Neurology, University of Colorado, School of Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
9
|
Akman O, Moshé SL, Galanopoulou AS. Sex-specific consequences of early life seizures. Neurobiol Dis 2014; 72 Pt B:153-66. [PMID: 24874547 DOI: 10.1016/j.nbd.2014.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 12/29/2022] Open
Abstract
Seizures are very common in the early periods of life and are often associated with poor neurologic outcome in humans. Animal studies have provided evidence that early life seizures may disrupt neuronal differentiation and connectivity, signaling pathways, and the function of various neuronal networks. There is growing experimental evidence that many signaling pathways, like GABAA receptor signaling, the cellular physiology and differentiation, or the functional maturation of certain brain regions, including those involved in seizure control, mature differently in males and females. However, most experimental studies of early life seizures have not directly investigated the importance of sex on the consequences of early life seizures. The sexual dimorphism of the developing brain raises the question that early seizures could have distinct effects in immature females and males that are subjected to seizures. We will first discuss the evidence for sex-specific features of the developing brain that could be involved in modifying the susceptibility and consequences of early life seizures. We will then review how sex-related biological factors could modify the age-specific consequences of induced seizures in the immature animals. These include signaling pathways (e.g., GABAA receptors), steroid hormones, growth factors. Overall, there are very few studies that have specifically addressed seizure outcomes in developing animals as a function of sex. The available literature indicates that a variety of outcomes (histopathological, behavioral, molecular, epileptogenesis) may be affected in a sex-, age-, region-specific manner after seizures during development. Obtaining a better understanding for the gender-related mechanisms underlying epileptogenesis and seizure comorbidities will be necessary to develop better gender and age appropriate therapies.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, 34394 Istanbul, Turkey.
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
10
|
Prince DA. How do we make models that are useful in understanding partial epilepsies? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:233-41. [PMID: 25012380 DOI: 10.1007/978-94-017-8914-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The goals of constructing epilepsy models are (1) to develop approaches to prophylaxis of epileptogenesis following cortical injury; (2) to devise selective treatments for established epilepsies based on underlying pathophysiological mechanisms; and (3) use of a disease (epilepsy) model to explore brain molecular, cellular and circuit properties. Modeling a particular epilepsy syndrome requires detailed knowledge of key clinical phenomenology and results of human experiments that can be addressed in critically designed laboratory protocols. Contributions to understanding mechanisms and treatment of neurological disorders has often come from research not focused on a specific disease-relevant issue. Much of the foundation for current research in epilepsy falls into this category. Too strict a definition of the relevance of an experimental model to progress in preventing or curing epilepsy may, in the long run, slow progress. Inadequate exploration of the experimental target and basic laboratory results in a given model can lead to a failed effort and false negative or positive results. Models should be chosen based on the specific issues to be addressed rather than on convenience of use. Multiple variables including maturational age, species and strain, lesion type, severity and location, latency from injury to experiment and genetic background will affect results. A number of key issues in clinical and basic research in partial epilepsies remain to be addressed including the mechanisms active during the latent period following injury, susceptibility factors that predispose to epileptogenesis, injury - induced adaptive versus maladaptive changes, mechanisms of pharmaco-resistance and strategies to deal with multiple pathophysiological processes occurring in parallel.
Collapse
Affiliation(s)
- David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA,
| |
Collapse
|