1
|
Di Meglio L, Rodà GM, Arrichiello A, Gurgitano M, Carrafiello G, Angileri SA. Lifesaving embolization in a massive lumbar artery bleeding: Interventional radiology management. Radiol Case Rep 2021; 16:3113-3116. [PMID: 34457098 PMCID: PMC8377423 DOI: 10.1016/j.radcr.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022] Open
Abstract
Vertebral fractures are the most frequent fractures associated with osteoporosis. Thus far, there are no reported cases in literature analyzing intervertebral bleeding as a result of an osteoporotic vertebral fracture. The authors report a case of an 85-year-old woman in hemorrhagic shock for an unusual vertebral fracture causing a massive bleeding, which was contained by the vertebral ligament system inside the body of L4, treated with an endovascular approach. Since there are no guidelines for a treatment for the case mentioned above or similar, our aim is to describe a possible approach to a potentially life-threatening rare event.
Collapse
Affiliation(s)
- Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via festa del perdono 7, Milan 20122, Italy
| | - Giovanni Maria Rodà
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via festa del perdono 7, Milan 20122, Italy
| | - Antonio Arrichiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via festa del perdono 7, Milan 20122, Italy
| | - Martina Gurgitano
- Operative Unit of Radiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
2
|
Mummaneni N, Burke JF, DiGiorgio AM, Thomas LH, Duong-Fernandez X, Harris M, Pascual LU, Ferguson AR, Russell Huie J, Pan JZ, Hemmerle DD, Singh V, Torres-Espin A, Omondi C, Kyritsis N, Weinstein PR, Whetstone WD, Manley GT, Bresnahan JC, Beattie MS, Cohen-Adad J, Dhall SS, Talbott JF. Injury volume extracted from MRI predicts neurologic outcome in acute spinal cord injury: A prospective TRACK-SCI pilot study. J Clin Neurosci 2020; 82:231-236. [PMID: 33248950 DOI: 10.1016/j.jocn.2020.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
Conventional MRI measures of traumatic spinal cord injury severity largely rely on 2-dimensional injury characteristics such as intramedullary lesion length and cord compression. Recent advances in spinal cord (SC) analysis have led to the development of a robust anatomic atlas incorporated into an open-source platform called the Spinal Cord Toolbox (SCT) that allows for quantitative volumetric injury analysis. In the current study, we evaluate the prognostic value of volumetric measures of spinal cord injury on MRI following registration of T2-weighted (T2w) images and segmented lesions from acute SCI patients with a standardized atlas. This IRB-approved prospective cohort study involved the image analysis of 60 blunt cervical SCI patients enrolled in the TRACK-SCI clinical research protocol. Axial T2w MRI data obtained within 24 h of injury were processed using the SCT. Briefly, SC MRIs were automatically segmented using the sct_deepseg_sc tool in the SCT and segmentations were manually corrected by a neuro-radiologist. Lesion volume data were used as predictor variables for correlation with lower extremity motor scores at discharge. Volumetric MRI measures of T2w signal abnormality comprising the SCI lesion accurately predict lower extremity motor scores at time of patient discharge. Similarly, MRI measures of injury volume significantly correlated with motor scores to a greater degree than conventional 2-D metrics of lesion size. The volume of total injury and of injured spinal cord motor regions on T2w MRI is significantly and independently associated with neurologic outcome at discharge after injury.
Collapse
Affiliation(s)
- Nikhil Mummaneni
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - John F Burke
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Anthony M DiGiorgio
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Leigh H Thomas
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Xuan Duong-Fernandez
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Mark Harris
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Lisa U Pascual
- Orthopedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA; San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - J Russell Huie
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Jonathan Z Pan
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Debra D Hemmerle
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Vineeta Singh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Abel Torres-Espin
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Cleopa Omondi
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Nikos Kyritsis
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Phillip R Weinstein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA; Institute for Neurodegenerative Diseases, Spine Center, University of California San Francisco, San Francisco, CA, USA
| | - William D Whetstone
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Geoffrey T Manley
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline C Bresnahan
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Michael S Beattie
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Weill Institutes for Neuroscience, San Francisco, CA, USA
| | - Julien Cohen-Adad
- Polytechnique Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Sanjay S Dhall
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason F Talbott
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|