1
|
Nuding SC, Segers LS, Iceman KE, O'Connor R, Dean JB, Valarezo PA, Shuman D, Solomon IC, Bolser DC, Morris KF, Lindsey BG. Hypoxia evokes a sequence of raphe-pontomedullary network operations for inspiratory drive amplification and gasping. J Neurophysiol 2024; 132:1315-1329. [PMID: 39259892 PMCID: PMC11495181 DOI: 10.1152/jn.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024] Open
Abstract
Hypoxia can trigger a sequence of breathing-related behaviors, from augmentation to apneusis to apnea and gasping. Gasping is an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypotheses that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and that this drive is distributed via an efference copy mechanism. This generates coordinated gasplike discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from six decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated adult cats. Arterial blood pressure, phrenic nerve activity, end-tidal CO2, and other parameters were monitored. Hypoxia was produced by ventilation with a gas mixture of 5% O2 in nitrogen. Neuron spike trains were recorded at multiple pontomedullary sites simultaneously and evaluated for firing rate modulations and short-timescale correlations indicative of functional connectivity. Experimental perturbations evoked reconfiguration of raphe-pontomedullary circuits during initial augmentation, apneusis and augmented bursts, apnea, and gasping. Functional connectivity, altered firing rates, efference copy of gasp drive, and coordinated incremental blood pressure increases support a distributed brain stem network model for amplification and broadcasting of inspiratory drive during autoresuscitative gasping. Gasping begins with a reduction in inhibition by expiratory neurons and an initial loss of inspiratory drive during hypoxic apnea and culminates in autoresuscitative efforts. NEW & NOTEWORTHY Severe hypoxia evokes a sequence of breathing-related behaviors culminating in gasping. We report firing rate modulations and short-timescale correlations in spike trains recorded simultaneously in the raphe-pontomedullary respiratory network during hypoxia. Our findings support a disinhibitory microcircuit and a distributed efference copy mechanism for amplification of gasping. Coordinated increments in blood pressure lead to a model for autoresuscitative bootstrapping of peripheral chemoreceptor reflexes, breathing, and sympathetic activity, complementing and extending prior work.
Collapse
Affiliation(s)
- Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kimberly E Iceman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Russell O'Connor
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Pierina A Valarezo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Dale Shuman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Irene C Solomon
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
2
|
Corradetti D, Bernardi A, Corradetti R. Deep learning models for atypical serotonergic cells recognition. J Neurosci Methods 2024; 407:110158. [PMID: 38703797 DOI: 10.1016/j.jneumeth.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The serotonergic system modulates brain processes via functionally distinct subpopulations of neurons with heterogeneous properties, including their electrophysiological activity. In extracellular recordings, serotonergic neurons to be investigated for their functional properties are commonly identified on the basis of "typical" features of their activity, i.e. slow regular firing and relatively long duration of action potentials. Thus, due to the lack of equally robust criteria for discriminating serotonergic neurons with "atypical" features from non-serotonergic cells, the physiological relevance of the diversity of serotonergic neuron activities results largely understudied. NEW METHODS We propose deep learning models capable of discriminating typical and atypical serotonergic neurons from non-serotonergic cells with high accuracy. The research utilized electrophysiological in vitro recordings from serotonergic neurons identified by the expression of fluorescent proteins specific to the serotonergic system and non-serotonergic cells. These recordings formed the basis of the training, validation, and testing data for the deep learning models. The study employed convolutional neural networks (CNNs), known for their efficiency in pattern recognition, to classify neurons based on the specific characteristics of their action potentials. RESULTS The models were trained on a dataset comprising 27,108 original action potential samples, alongside an extensive set of 12 million synthetic action potential samples, designed to mitigate the risk of overfitting the background noise in the recordings, a potential source of bias. Results show that the models achieved high accuracy and were further validated on "non-homogeneous" data, i.e., data unknown to the model and collected on different days from those used for the training of the model, to confirm their robustness and reliability in real-world experimental conditions. COMPARISON WITH EXISTING METHODS Conventional methods for identifying serotonergic neurons allow recognition of serotonergic neurons defined as typical. Our model based on the analysis of the sole action potential reliably recognizes over 94% of serotonergic neurons including those with atypical features of spike and activity. CONCLUSION The model is ready for use in experiments conducted with the here described recording parameters. We release the codes and procedures allowing to adapt the model to different acquisition parameters or for identification of other classes of spontaneously active neurons.
Collapse
Affiliation(s)
- Daniele Corradetti
- Grupo de Fisica Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, Lisboa, 1049-001, Portugal; Departamento de Matematica, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Faro, Portugal.
| | | | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, Firenze, 50139, Toscana, Italy.
| |
Collapse
|
3
|
Frazure M, Morimoto I, Fielder N, Mellen N, Iceman K, Pitts T. Serotonin therapies for opioid-induced disordered swallow and respiratory depression. J Appl Physiol (1985) 2024; 136:821-843. [PMID: 38385184 PMCID: PMC11286276 DOI: 10.1152/japplphysiol.00509.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Opioids are well-known to cause respiratory depression, but despite clinical evidence of dysphagia, the effects of opioids on swallow excitability and motor pattern are unknown. We tested the effects of the clinically relevant opioid buprenorphine on pharyngeal swallow and respiratory drive in male and female rats. We also evaluated the utility of 5-HT1A agonists (8-OH-DPAT and buspirone) to improve swallowing and breathing following buprenorphine administration. Experiments were performed on 44 freely breathing Sprague-Dawley rats anesthetized with sodium pentobarbital. Bipolar fine wire electrodes were inserted into the mylohyoid, thyroarytenoid, posterior cricoarytenoid, thyropharyngeus, and diaphragm muscles to measure electromyographic (EMG) activity of swallowing and breathing. We evaluated the hypotheses that swallowing varies by stimulus, opioids depress swallowing and breathing, and that 5-HT1A agonists improve these depressions. Our results largely confirmed the following hypotheses: 1) swallow-related EMG activity was larger during swallows elicited by esophageal distension plus oral water infusion than by either stimulus alone. 2) Buprenorphine depressed swallow in both sexes, but females were more susceptible to total swallow suppression. 3) Female animals were also more vulnerable to opioid-induced respiratory depression. 4) 8-OH-DPAT rescued breathing following buprenorphine-induced respiratory arrest, and pretreatment with the partial 5-HT1A agonist buspirone prevented buprenorphine-induced respiratory arrest in female animals. 5) 8-OH-DPAT enhanced mylohyoid and thyropharyngeus EMG amplitude during swallow but did not restore excitability of the swallow pattern generator following total suppression by buprenorphine. Our results highlight sex-specific and behavior-specific effects of buprenorphine and provide preclinical evidence of a 5HT1A agonist for the treatment of respiratory depression and dysphagia.NEW & NOTEWORTHY This is the first study, to our knowledge, to evaluate sex-specific effects of opioid administration on pharyngeal swallow. We expand on a small but growing number of studies that report a lower threshold for opioid-induced respiratory depression in females compared with males, and we are the first to produce this effect with the partial μ-opioid-receptor agonist buprenorphine. This is the first demonstration, to our knowledge, that activation of 5-HT1A receptors can improve swallow and breathing outcomes following systemic buprenorphine administration.
Collapse
Affiliation(s)
- Michael Frazure
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - In Morimoto
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Nathan Fielder
- School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Nicholas Mellen
- Department of Neurology, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Kimberly Iceman
- Department of Speech, Language, and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, Columbia, Missouri, United States
| | - Teresa Pitts
- Department of Speech, Language, and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Getsy PM, Coffee GA, Kelley TJ, Lewis SJ. Male histone deacetylase 6 (HDAC6) knockout mice have enhanced ventilatory responses to hypoxic challenge. Front Physiol 2024; 14:1332810. [PMID: 38384929 PMCID: PMC10880035 DOI: 10.3389/fphys.2023.1332810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class II histone deacetylase that is predominantly localized in the cytoplasm of cells. HDAC6 associates with microtubules and regulates acetylation of tubulin and other proteins. The possibility that HDAC6 participates in hypoxic signaling is supported by evidence that 1) hypoxic gas challenges cause microtubule depolymerization, 2) expression of hypoxia inducible factor alpha (HIF-1α) is regulated by microtubule alterations in response to hypoxia, and 3) inhibition of HDAC6 prevents HIF-1α expression and protects tissue from hypoxic/ischemic insults. The aim of this study was to address whether the absence of HDAC6 alters ventilatory responses during and/or after hypoxic gas challenge (10% O2, 90% N2 for 15 min) in adult male wildtype (WT) C57BL/6 mice and HDAC6 knock-out (KO) mice. Key findings were that 1) baseline values for frequency of breathing, tidal volume, inspiratory and expiratory times, and end expiratory pause were different between knock-out mice and wildtype mice, 2) ventilatory responses during hypoxic challenge were more robust in KO mice than WT mice for recorded parameters including, frequency of breathing, minute ventilation, inspiratory and expiratory durations, peak inspiratory and expiratory flows, and inspiratory and expiratory drives, and 3) responses upon return to room-air were markedly different in KO compared to WT mice for frequency of breathing, minute ventilation, inspiratory and expiratory durations, end expiratory pause (but not end inspiratory pause), peak inspiratory and expiratory flows, and inspiratory and expiratory drives. These data suggest that HDAC6 may have a fundamentally important role in regulating the hypoxic ventilatory response in mice.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas J. Kelley
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, CWRU, Cleveland, OH, United States
- Functional Electrical Stimulation Center, CWRU, Cleveland, OH, United States
| |
Collapse
|
5
|
Nuding SC, Segers LS, Iceman K, O'Connor R, Dean JB, Valarezo PA, Shuman D, Solomon IC, Bolser DC, Morris KF, Lindsey BG. Hypoxia evokes a sequence of raphe-pontomedullary network operations for inspiratory drive amplification and gasping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566027. [PMID: 37986850 PMCID: PMC10659307 DOI: 10.1101/2023.11.07.566027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hypoxia can trigger a sequence of breathing-related behaviors, from tachypnea to apneusis to apnea and gasping, an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypothesis that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and a distributed efference copy mechanism that generates coordinated gasp-like discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from 6 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated adult cats. Arterial blood pressure, phrenic nerve activity, end-tidal CO2, and other parameters were monitored. Hypoxia was produced by ventilation with a gas mixture of 5% O2 in nitrogen (N2). Neuron spike trains were recorded at multiple pontomedullary sites simultaneously and evaluated for firing rate modulations and short-time scale correlations indicative of functional connectivity. Experimental perturbations evoked reconfiguration of raphe-pontomedullary circuits during tachypnea, apneusis and augmented bursts, apnea, and gasping. The functional connectivity, altered firing rates, efference copy of gasp drive, and coordinated step increments in blood pressure reported here support a distributed brain stem network model for amplification and broadcasting of inspiratory drive during autoresuscitative gasping that begins with a reduction in inhibition by expiratory neurons and an initial loss of inspiratory drive during hypoxic apnea.
Collapse
|
6
|
Getsy PM, Coffee GA, Kelley TJ, Lewis SJ. Male histone deacetylase 6 (HDAC6) knockout mice have enhanced ventilatory responses to hypoxic challenge. RESEARCH SQUARE 2023:rs.3.rs-3005686. [PMID: 37398019 PMCID: PMC10312977 DOI: 10.21203/rs.3.rs-3005686/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a class II histone deacetylase that is predominantly localized in the cytoplasm of cells. HDAC6 associates with microtubules, regulating acetylation of tubulin and other proteins. The possibility that HDAC6 participates in hypoxic signaling is supported by evidence that (1) hypoxic gas challenges cause microtubule depolymerization, (2) expression of hypoxia inducible factor alpha (HIF)-1α is regulated by microtubule alterations in response to hypoxia, and (3) inhibition of HDAC6 prevents HIF-1α expression and protects tissue from hypoxic/ischemic insults. The aim of this study was to address whether the absence of HDAC6 alters ventilatory responses during and/or after hypoxic gas challenges (10% O2, 90% N2 for 15 min) in adult male wild-type (WT) C57BL/6 mice and HDAC6 knockout (KO) mice. Key findings were that (1) baseline values for frequency of breathing, tidal volume, inspiratory and expiratory times and end expiratory pause were different between KO mice and WT mice, (2) ventilatory responses during hypoxic challenge were more robust in KO mice than WT mice for parameters including frequency of breathing, minute ventilation, inspiratory and expiratory durations, peak inspiratory and expiratory flows, inspiratory and expiratory drives, and (3) responses upon return to room-air were markedly different in KO mice than WT mice for frequency of breathing, minute ventilation, inspiratory and expiratory durations, end expiratory (but not end inspiratory) pauses, peak inspiratory and expiratory flows, and inspiratory or expiratory drives. These data suggest that HDAC6 may have a fundamentally important role in regulating the neural responses to hypoxia.
Collapse
|
7
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
9
|
Pitts T, Iceman KE. Deglutition and the Regulation of the Swallow Motor Pattern. Physiology (Bethesda) 2023; 38:0. [PMID: 35998250 PMCID: PMC9707372 DOI: 10.1152/physiol.00005.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite centuries of investigation, questions and controversies remain regarding the fundamental genesis and motor pattern of swallow. Two significant topics include inspiratory muscle activity during swallow (Schluckatmung, i.e., "swallow-breath") and anatomical boundaries of the swallow pattern generator. We discuss the long history of reports regarding the presence or absence of Schluckatmung and the possible advantages of and neural basis for such activity, leading to current theories and novel experimental directions.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Kimberly E Iceman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
10
|
Parker D. Neurobiological reduction: From cellular explanations of behavior to interventions. Front Psychol 2022; 13:987101. [PMID: 36619115 PMCID: PMC9815460 DOI: 10.3389/fpsyg.2022.987101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Scientific reductionism, the view that higher level functions can be explained by properties at some lower-level or levels, has been an assumption of nervous system analyses since the acceptance of the neuron doctrine in the late 19th century, and became a dominant experimental approach with the development of intracellular recording techniques in the mid-20th century. Subsequent refinements of electrophysiological approaches and the continual development of molecular and genetic techniques have promoted a focus on molecular and cellular mechanisms in experimental analyses and explanations of sensory, motor, and cognitive functions. Reductionist assumptions have also influenced our views of the etiology and treatment of psychopathologies, and have more recently led to claims that we can, or even should, pharmacologically enhance the normal brain. Reductionism remains an area of active debate in the philosophy of science. In neuroscience and psychology, the debate typically focuses on the mind-brain question and the mechanisms of cognition, and how or if they can be explained in neurobiological terms. However, these debates are affected by the complexity of the phenomena being considered and the difficulty of obtaining the necessary neurobiological detail. We can instead ask whether features identified in neurobiological analyses of simpler aspects in simpler nervous systems support current molecular and cellular approaches to explaining systems or behaviors. While my view is that they do not, this does not invite the opposing view prevalent in dichotomous thinking that molecular and cellular detail is irrelevant and we should focus on computations or representations. We instead need to consider how to address the long-standing dilemma of how a nervous system that ostensibly functions through discrete cell to cell communication can generate population effects across multiple spatial and temporal scales to generate behavior.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Pilowsky PM. Illuminating the mechanisms underlying obstructive sleep apnea. Acta Physiol (Oxf) 2022; 236:e13883. [PMID: 36040240 DOI: 10.1111/apha.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/29/2023]
|
12
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
13
|
Moody OA, Zhang ER, Arora V, Kato R, Cotten JF, Solt K. D-Amphetamine Accelerates Recovery of Consciousness and Respiratory Drive After High-Dose Fentanyl in Rats. Front Pharmacol 2020; 11:585356. [PMID: 33424595 PMCID: PMC7793336 DOI: 10.3389/fphar.2020.585356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
In the United States, fentanyl causes approximately 60,000 drug overdose deaths each year. Fentanyl is also frequently administered as an analgesic in the perioperative setting, where respiratory depression remains a common clinical problem. Naloxone is an efficacious opioid antagonist, but it possesses a short half-life and undesirable side effects. This study was conducted to test the hypothesis that d-amphetamine ameliorates respiratory depression and hastens the return of consciousness following high-dose fentanyl. Behavioral endpoints (first head movement, two paws down, and return of righting), arterial blood gas analysis and local field potential recordings from the prefrontal cortex were conducted in adult rats after intravenous administration of of fentanyl (55 µg/kg) at a dose sufficient to induce loss of righting and respiratory depression, followed by intravenous d-amphetamine (3 mg/kg) or saline (vehicle). D-amphetamine accelerated the time to return of righting by 36.6% compared to saline controls. D-amphetamine also hastened recovery of arterial pH, and the partial pressure of CO2, O2 and sO2 compared to controls, with statistically significant differences in pH after 5 min and 15 min. Local field potential recordings from the prefrontal cortex showed that within 5 min of d-amphetamine administration, the elevated broadband power <20 Hz produced by fentanyl had returned to awake baseline levels, consistent with the return of consciousness. Overall, d-amphetamine attenuated respiratory acidosis, increased arterial oxygenation, and accelerated the return of consciousness in the setting of fentanyl intoxication. This suggests that d-amphetamine may be a useful adjunct or alternative to opioid receptor antagonists such as naloxone.
Collapse
Affiliation(s)
- Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Vipin Arora
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Risako Kato
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
15
|
Erickson JT. Central serotonin and autoresuscitation capability in mammalian neonates. Exp Neurol 2020; 326:113162. [DOI: 10.1016/j.expneurol.2019.113162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
16
|
Zhang Y, Avery T, Vakhtin AA, Mathersul DC, Tranvinh E, Wintermark M, Massaband P, Ashford JW, Bayley PJ, Furst AJ. Brainstem atrophy in Gulf War Illness. Neurotoxicology 2020; 78:71-79. [PMID: 32081703 DOI: 10.1016/j.neuro.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Gulf War Illness (GWI) is a condition that affects about 30 % of veterans who served in the 1990-91 Persian Gulf War. Given its broad symptomatic manifestation, including chronic pain, fatigue, neurological, gastrointestinal, respiratory, and skin problems, it is of interest to examine whether GWI is associated with changes in the brain. Existing neuroimaging studies, however, have been limited by small sample sizes, inconsistent GWI diagnosis criteria, and potential comorbidity confounds. OBJECTIVES Using a large cohort of US veterans with GWI, we assessed regional brain volumes for their associations with GWI, and quantified the relationships between any regional volumetric changes and GWI symptoms. METHODS Structural magnetic resonance imaging (MRI) scans from 111 veterans with GWI (Age = 49 ± 6, 88 % Male) and 59 healthy controls (age = 51 ± 9, 78 % male) were collected at the California War Related Illness and Injury Study Center (WRIISC-CA) and from a multicenter study of the Parkinson's Progression Marker Initiative (PPMI), respectively. Individual MRI volumes were segmented and parcellated using FreeSurfer. Regional volumes of 19 subcortical, 68 cortical, and 3 brainstem structures were evaluated in the GWI cohort relative to healthy controls. The relationships between regional volumes and GWI symptoms were also assessed. RESULTS We found significant subcortical atrophy, but no cortical differences, in the GWI group relative to controls, with the largest effect detected in the brainstem, followed by the ventral diencephalon and the thalamus. In a subsample of 58 veterans with GWI who completed the Chronic Fatigue Scale (CFS) inventory of Centers for Disease Control and Prevention (CDC), smaller brainstem volumes were significantly correlated with increased severities of fatigue and depressive symptoms. CONCLUSION The findings suggest that brainstem volume may be selectively affected by GWI, and that the resulting atrophy could in turn mediate or moderate GWI-related symptoms such as fatigue and depression. Consequently, the brain stem should be carefully considered in future research focusing on GWI pathology.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA.
| | - Timothy Avery
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Andrei A Vakhtin
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Danielle C Mathersul
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Eric Tranvinh
- Neuroradiology, Stanford University School of Medicine, USA
| | - Max Wintermark
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Neuroradiology, Stanford University School of Medicine, USA
| | - Payam Massaband
- Radiology, VA Palo Alto Health Care System, USA; Radiology, Stanford University School of Medicine, USA
| | - J Wesson Ashford
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Peter J Bayley
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Ansgar J Furst
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA; Neurology and Neurological Sciences, Stanford University, USA; Polytrauma System of Care (PSC), VA Palo Alto Health Care System, USA
| |
Collapse
|
17
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
18
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
19
|
Murugesan A, Rani MRS, Vilella L, Lacuey N, Hampson JP, Faingold CL, Friedman D, Devinsky O, Sainju RK, Schuele S, Diehl B, Nei M, Harper RM, Bateman LM, Richerson G, Lhatoo SD. Postictal serotonin levels are associated with peri-ictal apnea. Neurology 2019; 93:e1485-e1494. [PMID: 31484709 DOI: 10.1212/wnl.0000000000008244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine the relationship between serum serotonin (5-HT) levels, ictal central apnea (ICA), and postconvulsive central apnea (PCCA) in epileptic seizures. METHODS We prospectively evaluated video EEG, plethysmography, capillary oxygen saturation (SpO2), and ECG for 49 patients (49 seizures) enrolled in a multicenter study of sudden unexpected death in epilepsy (SUDEP). Postictal and interictal venous blood samples were collected after a clinical seizure for measurement of serum 5-HT levels. Seizures were classified according to the International League Against Epilepsy 2017 seizure classification. We analyzed seizures with and without ICA (n = 49) and generalized convulsive seizures (GCS) with and without PCCA (n = 27). RESULTS Postictal serum 5-HT levels were increased over interictal levels for seizures without ICA (p = 0.01), compared to seizures with ICA (p = 0.21). In patients with GCS without PCCA, serum 5-HT levels were increased postictally compared to interictal levels (p < 0.001), but not in patients with seizures with PCCA (p = 0.22). Postictal minus interictal 5-HT levels also differed between the 2 groups with and without PCCA (p = 0.03). Increased heart rate was accompanied by increased serum 5-HT levels (postictal minus interictal) after seizures without PCCA (p = 0.03) compared to those with PCCA (p = 0.42). CONCLUSIONS The data suggest that significant seizure-related increases in serum 5-HT levels are associated with a lower incidence of seizure-related breathing dysfunction, and may reflect physiologic changes that confer a protective effect against deleterious phenomena leading to SUDEP. These results need to be confirmed with a larger sample size study.
Collapse
Affiliation(s)
- Arun Murugesan
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - M R Sandhya Rani
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD.
| | - Laura Vilella
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Nuria Lacuey
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Johnson P Hampson
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Carl L Faingold
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Daniel Friedman
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Orrin Devinsky
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Rup K Sainju
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Stephan Schuele
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Beate Diehl
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Maromi Nei
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Ronald M Harper
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Lisa M Bateman
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - George Richerson
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Samden D Lhatoo
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| |
Collapse
|
20
|
Tadjalli A, Mitchell GS. Cervical spinal 5-HT 2A and 5-HT 2B receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation. J Appl Physiol (1985) 2019; 127:432-443. [PMID: 31219768 DOI: 10.1152/japplphysiol.01113.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is a key regulator of spinal respiratory motor plasticity. For example, spinal 5-HT receptor activation is necessary for the induction of phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity triggered by moderate acute intermittent hypoxia (mAIH). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum 5-HT-receptor antagonist, methysergide. However, methysergide does not allow distinctions between the relative contributions of different 5-HT receptor subtypes. Intravenous administration of the Gq protein-coupled 5-HT2A/2C receptor antagonist ketanserin blocks mAIH-induced pLTF when administered before, but not after, mAIH; thus, 5-HT2 receptor activation is necessary for the induction but not maintenance of mAIH-induced pLTF. However, systemic ketanserin administration does not identify the site of the relevant 5-HT2A/2C receptors. Furthermore, this approach does not differentiate between the roles of 5-HT2A versus 5-HT2C receptors, nor does it preclude involvement of other Gq protein-coupled metabotropic 5-HT receptors capable of eliciting long-lasting phrenic motor facilitation, such as 5-HT2B receptors. Here we tested the hypothesis that mAIH-induced pLTF requires cervical spinal 5-HT2 receptor activation and determined which 5-HT2 receptor subtypes are involved. Anesthetized, paralyzed, and ventilated adult male Sprague Dawley rats were pretreated intrathecally with cervical (~C3-C5) spinal injections of subtype selective 5-HT2A/2C, 5-HT2B, or 5-HT2C receptor antagonists before mAIH. Whereas cervical spinal 5-HT2C receptor inhibition had no impact on mAIH-induced pLTF, pLTF was no longer observed after pretreatment with either 5-HT2A/2C or 5-HT2B receptor antagonists. Furthermore, spinal pretreatment with an MEK/ERK MAPK inhibitor blocked phrenic motor facilitation elicited by intrathecal injections of 5-HT2A but not 5-HT2B receptor agonists. Thus, mAIH-induced pLTF requires concurrent cervical spinal activation of both 5-HT2A and 5-HT2B receptors. However, these distinct receptor subtypes contribute to phrenic motor facilitation via distinct downstream signaling cascades that differ in their requirement for ERK MAPK signaling. The demonstration that both 5-HT2A and 5-HT2B receptors make unique contributions to mAIH-induced pLTF advances our understanding of mechanisms that underlie 5-HT-induced phrenic motor plasticity.NEW & NOTEWORTHY Moderate acute intermittent hypoxia (mAIH) triggers a persistent enhancement in phrenic motor output, an effect termed phrenic long-term facilitation (pLTF). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum serotonin (5-HT) receptor antagonist methysergide, demonstrating the need for spinal 5-HT receptor activation. However, the exact type of 5-HT receptors required for initiation of pLTF remains unknown. To the best of out knowledge, the present study is the first to demonstrate that 1) spinal coactivation of two distinct Gq protein-coupled 5-HT2 receptor subtypes is necessary for mAIH-induced pLTF, and 2) these receptors contribute to pLTF via cascades that differ in their requirement for ERK MAPK signaling.
Collapse
Affiliation(s)
- Arash Tadjalli
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Murugesan A, Rani MRS, Hampson J, Zonjy B, Lacuey N, Faingold CL, Friedman D, Devinsky O, Sainju RK, Schuele S, Diehl B, Nei M, Harper RM, Bateman LM, Richerson G, Lhatoo SD. Serum serotonin levels in patients with epileptic seizures. Epilepsia 2018; 59:e91-e97. [PMID: 29771456 DOI: 10.1111/epi.14198] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 01/19/2023]
Abstract
Profound cardiovascular and/or respiratory dysfunction is part of the terminal cascade in sudden unexpected death in epilepsy (SUDEP). Central control of ventilation is mediated by brainstem rhythm generators, which are influenced by a variety of inputs, many of which use the modulatory neurotransmitter serotonin to mediate important inputs for breathing. The aim of this study was to investigate epileptic seizure-induced changes in serum serotonin levels and whether there are potential implications for SUDEP. Forty-one epileptic patients were pooled into 2 groups based on seizure type as (1) generalized tonic-clonic seizures (GTCS) of genetic generalized epilepsy and focal to bilateral tonic-clonic seizures (FBTCS; n = 19) and (2) focal seizures (n = 26) based on clinical signs using surface video-electroencephalography. Postictal serotonin levels were statistically significantly higher after GTCS and FBTCS compared to interictal levels (P = .002) but not focal seizures (P = .941). The change in serotonin (postictal-interictal) was inversely associated with a shorter duration of tonic phase of generalized seizures. The interictal serotonin level was inversely associated with a shorter period of postictal generalized electroencephalographic suppression. These data suggest that peripheral serum serotonin levels may play a role in seizure features and earlier postseizure recovery; these findings merit further study.
Collapse
Affiliation(s)
- Arun Murugesan
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - M R Sandhya Rani
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA.,Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA
| | - Johnson Hampson
- Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Bilal Zonjy
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA.,Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA
| | - Nuria Lacuey
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Carl L Faingold
- Department of Pharmacology and Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Daniel Friedman
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Rup K Sainju
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Stephan Schuele
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Beate Diehl
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Institute of Neurology, University College London, London, UK
| | - Maromi Nei
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Ronald M Harper
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lisa M Bateman
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - George Richerson
- Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samden D Lhatoo
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA.,Center for SUDEP Research, National Institute for Neurological Disorders and Stroke, Cleveland, OH, USA.,Neurological Institute, University Hospitals, Cleveland, OH, USA
| |
Collapse
|
22
|
Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex. J Neurosci 2017; 37:1807-1819. [PMID: 28073937 DOI: 10.1523/jneurosci.2316-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei.SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive.
Collapse
|
23
|
Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Res 2016; 124:49-54. [DOI: 10.1016/j.eplepsyres.2016.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
|
24
|
Kapoor K, Bhandare AM, Nedoboy PE, Mohammed S, Farnham MMJ, Pilowsky PM. Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience 2016; 329:12-29. [PMID: 27155147 DOI: 10.1016/j.neuroscience.2016.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
Abstract
Microglia are present throughout the central nervous system (CNS) and express receptors for every known neurotransmitter. During inflammation, microglia change into a state that either promotes removal of debris (M1), or into a state that promotes soothing (M2). Caudal- and rostral- ventrolateral medullary regions (CVLM and RVLM, respectively) of the brainstem are key nuclei involved in all aspects of the cardiovascular system. In this study, we investigate a novel role for microglia in cardiovascular control in the brainstem of adult male Sprague-Dawley (SD) rat. Here we show, that increases and decreases in blood pressure (BP) triggers alertness in the physiology of microglia in the brainstem region; inducing changes in microglial spatial distribution and the number of synapses in contact with microglial end processes. Following 6h of acute hypertension, the number of synapses in contact with microglia increased by ≈30% in both regions of the brainstem, CVLM and RVLM. Induction of acute hypotension for 6h causes microglia to reduce the number of synaptic contacts by >20% in both, CVLM and RVLM, nuclei of the brainstem. Our analysis of the morphological characteristics of microglia, and expression levels of M1 and M2, reveals that the changes induced in microglial behavior do not require any obvious dramatic changes in their morphology. Taken together, our findings suggest that microglia play a novel, unexpected, physiological role in the uninjured autonomic nuclei of CNS; we therefore speculate that microglia act cooperatively with brainstem cardiovascular neurons to maintain them in a physiologically receptive state.
Collapse
Affiliation(s)
- Komal Kapoor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Amol M Bhandare
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Suja Mohammed
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
25
|
McCulloch PF, Warren EA, DiNovo KM. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve. Front Physiol 2016; 7:148. [PMID: 27148082 PMCID: PMC4838619 DOI: 10.3389/fphys.2016.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022] Open
Abstract
This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Erik A Warren
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Karyn M DiNovo
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| |
Collapse
|
26
|
Wang X, Guo R, Zhao W, Pilowsky PM. Medullary mediation of the laryngeal adductor reflex: A possible role in sudden infant death syndrome. Respir Physiol Neurobiol 2016; 226:121-7. [PMID: 26774498 DOI: 10.1016/j.resp.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
The laryngeal adductor reflex (LAR) is a laryngeal protective reflex. Vagal afferent polymodal sensory fibres that have cell bodies in the nodose ganglion, originate in the sub-glottal area of the larynx and upper trachea. These polymodal sensory fibres respond to mechanical or chemical stimuli. The central axons of these sensory vagal neurons terminate in the dorsolateral subnuclei of the tractus solitarius in the medulla oblongata. The LAR is a critical, reflex in the pathways that play a protective role in the process of ventilation, and the sychronisation of ventilation with other activities that are undertaken by the oropharyngeal systems including: eating, speaking and singing. Failure of the LAR to operate properly at any time after birth can lead to SIDS, pneumonia or death. Despite the critical nature of this reflex, very little is known about the central pathways and neurotransmitters involved in the management of the LAR and any disorders associated with its failure to act properly. Here, we review current knowledge concerning the medullary nuclei and neurochemicals involved in the LAR and propose a potential neural pathway that may facilitate future SIDS research.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia
| | - Paul M Pilowsky
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia.
| |
Collapse
|