1
|
Kang J, Kanugovi A, Stella MPJ, Frimand Z, Farup J, Urtasun A, Liu S, Clausen AS, Ishak H, Bui S, Kim S, Ezran C, Botvinnik O, Porpiglia E, Krasnow M, de Morree A, Rando TA. In vivo self-renewal and expansion of quiescent stem cells from a non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645793. [PMID: 40196588 PMCID: PMC11974844 DOI: 10.1101/2025.03.27.645793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The development of non-human primate models is essential for the fields of developmental and regenerative biology because those models will more closely approximate human biology than do murine models. Based on single cell RNAseq and fluorescence-activated cell sorting, we report the identification and functional characterization of two quiescent stem cell populations (skeletal muscle stem cells (MuSCs) and mesenchymal stem cells termed fibro-adipogenic progenitors (FAPs)) in the non-human primate Microcebus murinus (the gray mouse lemur). We demonstrate in vivo proliferation, differentiation, and self-renewal of both MuSCs and FAPs. By combining cell phenotyping with cross-species molecular profiling and pharmacological interventions, we show that mouse lemur MuSCs and FAPs are more similar to human than to mouse counterparts. We identify unexpected gene targets involved in regulating primate MuSC proliferation and primate FAP adipogenic differentiation. Moreover, we find that the cellular composition of mouse lemur muscle better models human muscle than does macaque ( Macaca fascicularis ) muscle. Finally, we note that our approach presents as a generalizable pipeline for the identification, isolation, and characterization of stem cell populations in new animal models.
Collapse
|
2
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Hua Y, Dai L. Dysregulated Long Non-coding RNAs in Myasthenia Gravis- A Mini-Review. Curr Mol Med 2025; 25:2-12. [PMID: 38192147 DOI: 10.2174/0115665240281531231228051037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an acquired autoimmune disease that is mediated by humoral immunity, supplemented by cellular immunity, along with participation of the complement system. The pathogenesis of MG is complex; although autoimmune dysfunction is clearly implicated, the specific mechanism remains unclear. Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with lengths greater than 200 nucleotides, with increasing evidence of their rich biological functions and high-level structure conservation. LncRNAs can directly interact with proteins and microRNAs to regulate the expression of target genes at the transcription and post-transcription levels. In recent years, emerging studies have suggested that lncRNAs play roles in the differentiation of immune cells, secretion of immune factors, and complement production in the human body. This suggests the involvement of lncRNAs in the occurrence and progression of MG through various mechanisms. In addition, the differentially expressed lncRNAs in peripheral biofluid may be used as a biomarker to diagnose MG and evaluate its prognosis. Moreover, with the development of lncRNA expression regulation technology, it is possible to regulate the differentiation of immune cells and influence the immune response by regulating the expression of lncRNAs, which will provide a potential therapeutic option for MG. Here, we review the research progress on the role of lncRNAs in different pathophysiological events contributing to MG, focusing on specific lncRNAs that may largely contribute to the pathophysiology of MG, which could be used as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Liying Sun
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Xuhui Ye
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Linlin Wang
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Junping Yu
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Yan Wu
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Yun Hua
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Lihua Dai
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
3
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
4
|
Park SK, Taylor MG. A Unique Case of Non-paraneoplastic Lambert-Eaton Myasthenic Syndrome Treated With Subcutaneous Immunoglobulin: A Case Report and Review of Literature. Cureus 2024; 16:e60773. [PMID: 38903354 PMCID: PMC11188003 DOI: 10.7759/cureus.60773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune neuromuscular disorder caused by pathogenic autoantibodies directed against voltage-gated calcium channels present on the presynaptic nerve terminal. For LEMS patients refractory to initial symptomatic treatment with amifampridine, immunomodulatory therapy with intravenous immunoglobulin (IVIG) is often utilized. However, in the authors' review of literature, the utility of subcutaneous immunoglobulin (SCIG) in the treatment of LEMS has been scarcely reported. Here, we present a unique case of non-paraneoplastic LEMS managed with SCIG with excellent clinical response and improvement on electromyography. SCIG therapy may be a reasonable alternative for patients with LEMS who do not tolerate the intravenous formulation.
Collapse
Affiliation(s)
- Sojung K Park
- Neurology, Trinity Health Grand Rapids, Grand Rapids, USA
- Neurology, Michigan State University College of Human Medicine, Grand Rapids, USA
| | - Melanie G Taylor
- Neurology, Trinity Health Grand Rapids, Grand Rapids, USA
- Neurology, Michigan State University College of Human Medicine, Grand Rapids, USA
| |
Collapse
|
5
|
Nemeth C, Banik NL, Haque A. Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases. Int J Mol Sci 2024; 25:3520. [PMID: 38542497 PMCID: PMC10970763 DOI: 10.3390/ijms25063520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 02/01/2025] Open
Abstract
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors.
Collapse
Affiliation(s)
- Colin Nemeth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
6
|
Yi KH, Kim DC, Lee S, Lee HJ, Lee JH. Intramuscular Neural Distribution of the Gluteus Maximus Muscle: Diagnostic Electromyography and Injective Treatments. Diagnostics (Basel) 2024; 14:140. [PMID: 38248017 PMCID: PMC10813873 DOI: 10.3390/diagnostics14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION The purpose of this study was to investigate neural patterns within the gluteus maximus (Gmax) muscle to identify optimal EMG placement and injection sites for botulinum toxin and other injectable agents. METHODS This study used 10 fixed and 1 non-fixed adult Korean cadavers. Intramuscular arborization patterns were confirmed in the cranial, middle, and caudal segments of 20 Gmax muscles using Sihler staining. Ultrasound images were obtained from one cadaver, and blue dye was injected using ultrasound guidance to confirm the results. RESULTS The intramuscular innervation pattern of the Gmax was mostly in the middle part of this muscle. The nerve endings of the Gmax are mainly located in the 40-70% range in the cranial segment, the 30-60% range in the middle segment, and the 40-70% range in the caudal segment. DISCUSSION Addressing the spasticity of the gluteus maximus requires precise, site-specific botulinum toxin injections. The use of EMG and other injection therapies should be guided by the findings of this study. We propose that these specific sites, which correspond to areas with the densest nerve branches, are the safest and most efficient locations for both botulinum toxin injections and EMG procedures.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
- Maylin Clinic (Apgujeong), Seoul 06005, Republic of Korea
| | - Dong Chan Kim
- Department of Rehabilitation Medicine, Eunpyeong St. Mary’s Hospital, Seoul 03312, Republic of Korea;
| | - Siyun Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hyung-Jin Lee
- Catholic Institute for Applied Anatomy, Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
7
|
Foster MA, Lunn MP, Carr AS. First-line immunosuppression in neuromuscular diseases. Pract Neurol 2023:pn-2023-003708. [PMID: 37173131 DOI: 10.1136/pn-2023-003708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/15/2023]
Abstract
Autoimmune neuromuscular diseases are common and often treatable causes for peripheral nervous system dysfunction. If not optimally managed, they result in meaningful impairments and disability. The treating neurologist should aim to maximise clinical recovery with minimal iatrogenic risk. This requires careful patient and medication selection, appropriate counselling and close monitoring of clinical efficacy and safety. Here, we summarise our consensus departmental approach to first-line immunosuppression in neuromuscular diseases. We combine multispecialty evidence and expertise with a focus on autoimmune neuromuscular diseases to create guidance on starting, dosing and monitoring for toxic effects of the commonly used drugs. These include corticosteroids, steroid-sparing agents and cyclophosphamide. We also provide efficacy monitoring advice, as clinical response informs dosage and drug choice. The principles of this approach could be applied across much of the spectrum of immune-mediated neurological disorders where there is significant therapeutic crossover.
Collapse
Affiliation(s)
- Michael A Foster
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Division of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael Pt Lunn
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Aisling S Carr
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
8
|
Saifina LF, Abdalla M, Gubaidullina LM, Zueva IV, Eltayb WA, El-Arabey AA, Kharlamova AD, Lenina OA, Semenov VE, Petrov KA. Novel slow-binding reversible acetylcholinesterase inhibitors based on uracil moieties for possible treatment of myasthenia gravis and protection from organophosphate poisoning. Eur J Med Chem 2023; 246:114949. [PMID: 36462442 DOI: 10.1016/j.ejmech.2022.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
A series of new compounds in which uracil and 3,6-dimethyluracil moieties are bridged with different spacers were prepared and evaluated in vitro for the acetyl- and butyrylcholinesterase (AChE and BChE) inhibitory activities. These bisuracils are shown to be very effective inhibitors of AChE, inhibiting the enzyme at nano- and lower molar concentrations with extremely high selectivity for AChE vs. BChE. Kinetic analysis showed that the lead compound 2h acts as a slow-binding inhibitor of AChE and possess a long drug-target residence time (τ = 1/koff = 18.6 ± 7.5 min). Moreover, compound 2h ameliorated muscle weakness in myasthenia gravis rat model with a lower effective dose and longer lasting effect than pyridostigmine bromide. Besides, it was shown that compound 2h has an effect of increasing efficiency of antidotal therapy as a pretreatment for poisoning by organophosphates.
Collapse
Affiliation(s)
- Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
| | - Liliya M Gubaidullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, 11111, Sudan
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Alexandra D Kharlamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia.
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia; Kazan Federal University, 18 Kremlyovskaya str, Kazan, 420008, Russia
| |
Collapse
|
9
|
Redman RR, Mackenzie H, Dissanayake KN, Eddleston M, Ribchester RR. Donepezil inhibits neuromuscular junctional acetylcholinesterase and enhances synaptic transmission and function in isolated skeletal muscle. Br J Pharmacol 2022; 179:5273-5289. [PMID: 36028305 PMCID: PMC9826304 DOI: 10.1111/bph.15940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Donepezil, a piperidine inhibitor of acetylcholinesterase (AChE) prescribed for treatment of Alzheimer's disease, has adverse neuromuscular effects in humans, including requirement for higher concentrations of non-depolarising neuromuscular blockers during surgery. Here, we examined the effects of donepezil on synaptic transmission at neuromuscular junctions (NMJs) in isolated nerve-muscle preparations from mice. EXPERIMENTAL APPROACH We measured effects of therapeutic concentrations of donepezil (10 nM to 1 μM) on AChE enzymic activity, muscle force responses to repetitive stimulation, and spontaneous and evoked endplate potentials (EPPs) recorded intracellularly from flexor digitorum brevis muscles from CD01 or C57BlWldS mice. KEY RESULTS Donepezil inhibited muscle AChE with an approximate IC50 of 30 nM. Tetanic stimulation in sub-micromolar concentrations of donepezil prolonged post-tetanic muscle contractions. Preliminary Fluo4-imaging indicated an association of these contractions with an increase and slow decay of intracellular Ca2+ transients at motor endplates. Donepezil prolonged spontaneous miniature EPP (MEPP) decay time constants by about 65% and extended evoked EPP duration almost threefold. The mean frequency of spontaneous MEPPs was unaffected but the incidence of 'giant' MEPPs (gMEPPs), some exceeding 10 mV in amplitude, was increased. Neither mean MEPP amplitude (excluding gMEPPs), mean EPP amplitude, quantal content or synaptic depression during repetitive stimulation were significantly altered by concentrations of donepezil up to 1 μM. CONCLUSION AND IMPLICATIONS Adverse neuromuscular signs associated with donepezil therapy, including relative insensitivity to neuromuscular blockers, are probably due to inhibition of AChE at NMJs, prolonging the action of ACh on postsynaptic nicotinic acetylcholine receptors but without substantively impairing evoked ACh release.
Collapse
Affiliation(s)
- Robert R. Redman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Harry Mackenzie
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Michael Eddleston
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
10
|
Total Plasma Exchange in Neuromuscular Junction Disorders—A Single-Center, Retrospective Analysis of the Efficacy, Safety and Potential Diagnostic Properties in Doubtful Diagnosis. J Clin Med 2022; 11:jcm11154383. [PMID: 35955999 PMCID: PMC9369332 DOI: 10.3390/jcm11154383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
Neuromuscular junction disorders (NJDs) are a heterogeneous group of diseases including myasthenia gravis (MG). In some cases, patients are present with myasthenic symptoms without evidence of autoimmune antibodies, making diagnosis challenging. Total plasma exchange (TPE) has proven efficacy in NJDs. The objective is to describe the safety and efficacy of TPE in NJD patients with questionable disease activity or uncertain diagnosis in order to assess the diagnostic potential of TPE. We report an observational, retrospective cohort study of clinical routine data. All the data were derived from the electronic medical records of the Department of Neurology at University Hospital Essen. We searched for patients with NJDs between 1 July 2018 and 30 June 2021. Of the 303 patients who presented to the department with NJDs, 20 were treated with TPE; 9 patients did not show a measurable benefit from TPE (45%), 6 of whom were diagnosed with seronegative MG. Of these, 3 (50%) had long-standing ocular symptoms. There were decreases in the mean arterial pressure, hemoglobin, hematocrit and fibrinogen during treatment, which were not considered clinically relevant. In (seronegative) myasthenic patients, TPE may help to verify an uncertain diagnosis or to reveal possible muscle damage, allowing unnecessary therapy to be avoided.
Collapse
|
11
|
Kang L, Wan C. Paraneoplastic syndrome in neuroophthalmology. J Neurol 2022; 269:5272-5282. [PMID: 35779086 DOI: 10.1007/s00415-022-11247-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/16/2022]
Abstract
Paraneoplastic syndrome is a group of clinical symptoms that occur in the state of systemic malignant tumors. Paraneoplastic syndrome of the nervous system can affect any part of the central and peripheral nervous system and may also affect the eyes. In neuroophthalmology, paraneoplastic syndrome has a variety of manifestations that can affect both the afferent and efferent visual systems. The afferent system may involve the optic nerve, retina and uvea; the efferent system may involve eye movement, neuromuscular joints or involuntary eye movements and pupil abnormalities and may also have other neurological symptoms outside the visual system. This article discusses the clinical manifestations, pathological mechanisms, detection methods and treatment methods of paraneoplastic syndrome in neuroophthalmology. The performance of paraneoplastic syndrome is diverse, the diagnosis is difficult, and the treatment should be considered systematically. Differential diagnosis, optimal evaluation and management of these manifestations is not only the key to treatment but also a challenge.
Collapse
Affiliation(s)
- Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Chao Wan
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
12
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, Ashenberg O, Lek M, Dionne D, Win TS, Cuoco MS, Kuksenko O, Tsankov AM, Branton PA, Marshall JL, Greka A, Getz G, Segrè AV, Aguet F, Rozenblatt-Rosen O, Ardlie KG, Regev A. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022; 376:eabl4290. [PMID: 35549429 PMCID: PMC9383269 DOI: 10.1126/science.abl4290] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Collapse
Affiliation(s)
- Gökcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shankara Anand
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgenij Fiskin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - John M. Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thet Su Win
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Philip A. Branton
- The Joint Pathology Center Gynecologic/Breast Pathology, Silver Spring, MD 20910, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Bedside and laboratory diagnostic testing in myasthenia. J Neurol 2022; 269:3372-3384. [PMID: 35142871 PMCID: PMC9119875 DOI: 10.1007/s00415-022-10986-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Myasthenia gravis (MG) and congenital myasthenic syndromes (CMS) are a group of disorders with a well characterised autoimmune or genetic and neurophysiological basis. We reviewed the literature from the last 20 years assessing the utility of various neurophysiological, immunological, provocative and genetic tests in MG and CMS. Diagnostic sensitivity of repetitive nerve stimulation test ranges between 14 and 94% and specificity between 73 and 100%; sensitivity of single-fibre EMG (SFEMG) test ranges between 64 and 100% and specificity between 22 and 100%; anti-acetylcholine receptor (AChR) antibody sensitivity ranges from 13 to 97% and specificity ranges from 95 to 100%. Overall, SFEMG has the highest sensitivity while positive anti-AChR antibodies have the highest specificity. Newer testing strategies that have been investigated over the last couple of decades include ocular vestibular-evoked myogenic potentials, otoacoustic emissions and disease-specific circulating miRNAs in serum for autoimmune myasthenia, as well as next-generation sequencing for genetic testing of CMS. While there has been significant progress in developing newer testing strategies for diagnosing MG and CMS over the last couple of decades, more research is needed to assess the utility of these newer tools regarding their sensitivity and specificity.
Collapse
|
14
|
Salari N, Fatahi B, Bartina Y, Kazeminia M, Fatahian R, Mohammadi P, Shohaimi S, Mohammadi M. Global prevalence of myasthenia gravis and the effectiveness of common drugs in its treatment: a systematic review and meta-analysis. J Transl Med 2021; 19:516. [PMID: 34930325 PMCID: PMC8686543 DOI: 10.1186/s12967-021-03185-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Myasthenia gravis is a neuromuscular autoimmune disorder characterized by weakness and disability in the voluntary muscles. There have been several preliminary studies on the epidemiology of myasthenia gravis in different parts of the world and the effectiveness of common drugs in its treatment, but there has been no comprehensive study of the efficacy of common drugs in the treatment of myasthenia gravis. Therefore, this study aimed to determine the epidemiology of myasthenia gravis globally and the effectiveness of common drugs in its treatment using systematic review and meta-analysis. METHODS Research studies were extracted from IranDoc, MagIran, IranMedex, SID, ScienceDirect, Web of Sciences (WoS), ProQuest, Medline (PubMed), Scopus and Google Scholar based on Cochran's seven-step guidelines using existing keywords extracted in MeSH browser. The I2 test was used to calculate the heterogeneity of studies, and Begg and Mazumdar rank correlation tests were used to assess publication bias. Data were analyzed using Comprehensive Meta-Analysis software (Version 2). RESULTS In the search for descriptive studies based on the research question, 7374 articles were found. After deleting articles unrelated to the research question, finally, 63 articles with a sample size of 1,206,961,907 people were included in the meta-analysis. The prevalence of MG worldwide was estimated to be 12.4 people (95% CI 10.6-14.5) per 100,000 population. For analytical studies on the effectiveness of common myasthenia gravis drugs, 4672 articles were found initially, and after removing articles unrelated to the research question, finally, 20 articles with a sample size of 643 people in the drug group and 619 people in the placebo group were included in the study. As a result of the combination of studies, the difference between the mean QMGS score index after taking Mycophenolate and Immunoglobulin or plasma exchange drugs in the group of patients showed a significant decrease of 1.4 ± 0.77 and 0.62 ± 0.28, respectively (P < 0.01). CONCLUSION The results of systematic review of drug evaluation in patients with myasthenia gravis showed that Mycophenolate and Immunoglobulin or plasma exchange drugs have positive effects in the treatment of MG. It also represents the positive effect of immunoglobulin or plasma exchange on reducing SFEMG index and QMGS index and the positive effect of Mycophenolate in reducing MG-ADL index, SFEMG and Anti-AChR antibodies index. In addition, based on a meta-analysis of the random-effect model, the overall prevalence of MG in the world is 12.4 people per 100,000 population, which indicates the urgent need for attention to this disease for prevention and treatment.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behnaz Fatahi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Bartina
- Department of Translation Studies, Faculty of Literature, Istanbul University, Istanbul, Turkey
| | - Mohsen Kazeminia
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Fatahian
- Department of Neurosurgery, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Mohammadi
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, University Putra Malaysia, Serdang, Selangor Malaysia
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
15
|
Tks5 Regulates Synaptic Podosome Formation and Stabilization of the Postsynaptic Machinery at the Neuromuscular Junction. Int J Mol Sci 2021; 22:ijms222112051. [PMID: 34769479 PMCID: PMC8585010 DOI: 10.3390/ijms222112051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.
Collapse
|
16
|
Akkol EK, Karatoprak GŞ, Carpar E, Hussain Y, Khan H, Aschner M. Effects of Natural Products on Neuromuscular Junction. Curr Neuropharmacol 2021; 20:594-610. [PMID: 34561984 DOI: 10.2174/1570159x19666210924092627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular junction (NMJ) disorders result from damage, malfunction or absence of one or more key proteins involved in neuromuscular transmission, comprising a wide range of disorders. The most common pathology is antibody-mediated or downregulation of ion channels or receptors, resulting in Lambert-Eaton myasthenic syndrome, myasthenia gravis, and acquired neuromyotonia (Isaac's syndrome), and rarely congenital myasthenic syndromes caused by mutations in NMJ proteins. A wide range of symptomatic treatments, immunomodulating therapies, or immunosuppressive drugs have been used to treat NMJ diseases. Future research must be directed at better understanding of the pathogenesis of these diseases, and developing novel disease-specific treatments. Numerous secondary metabolites, especially alkaloids isolated from plants have been used to treat NMJ diseases in traditional and clinical practices. An ethnopharmacological approach has provided leads for identifying new treatment for NMJ diseases. In this review, we performed a literature survey in Pubmed, Science Direct, and Google Scholar to gather information on drug discovery from plant sources for NMJ disease treatments. To date, most research has focused on the effect of herbal remedies on cholinesterase inhibitory and antioxidant activities. This review provides leads for identifying potential new drugs from plant sources for the treatment of NMJ diseases.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara. Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039, Kayseri. Turkey
| | - Elif Carpar
- Department of Psychiatry, Private French La Paix Hospital, 34360, Istanbul. Turkey
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Mardan. Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
17
|
Voniati L, Papaleontiou A, Georgiou R, Tafiadis D. The Effectiveness of Oral Sensorimotor Intervention in Children with Feeding Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2021. [DOI: 10.1007/s40474-021-00236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Abstract
Autoimmune neurogenic dysphagia refers to manifestation of dysphagia due to autoimmune diseases affecting muscle, neuromuscular junction, nerves, roots, brainstem, or cortex. Dysphagia is either part of the evolving clinical symptomatology of an underlying neurological autoimmunity or occurs as a sole manifestation, acutely or insidiously. This opinion article reviews the autoimmune neurological causes of dysphagia, highlights clinical clues and laboratory testing that facilitate early diagnosis, especially when dysphagia is the presenting symptom, and outlines the most effective immunotherapeutic approaches. Dysphagia is common in inflammatory myopathies, most prominently in inclusion body myositis, and is frequent in myasthenia gravis, occurring early in bulbar-onset disease or during the course of progressive, generalized disease. Acute-onset dysphagia is often seen in Guillain–Barre syndrome variants and slowly progressive dysphagia in paraneoplastic neuropathies highlighted by the presence of specific autoantibodies. The most common causes of CNS autoimmune dysphagia are demyelinating and inflammatory lesions in the brainstem, occurring in patients with multiple sclerosis and neuromyelitis optica spectrum disorders. Less common, but often overlooked, is dysphagia in stiff-person syndrome especially in conjunction with cerebellar ataxia and high anti-GAD autoantibodies, and in gastrointestinal dysmotility syndromes associated with autoantibodies against the ganglionic acetyl-choline receptor. In the setting of many neurological autoimmunities, acute-onset or progressive dysphagia is a potentially treatable condition, requiring increased awareness for prompt diagnosis and early immunotherapy initiation.
Collapse
|
19
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
20
|
Abstract
Introduction: Paraneoplastic neurological syndromes (PNS) are a rare heterogeneous group of neurological diseases associated with tumors. These syndromes are the result of a cross-reactive immune response against antigens shared by the tumor and the nervous system. The discovery of an increasing number of autoantigens and the identification of tumoral factors leading to a substantial antitumoral immune response makes this topic highly innovative.Areas covered: This review covers the clinical, oncological, pathophysiological aspects of both immunological PNS groups. One is associated with autoantibodies against intracellular onconeural antibodies, which are highly specific for an underlying tumor, although the disease is mainly T-cell mediated. In contrast, PNS associated with pathogenic surface-binding/receptor autoantibodies, which are often responsive to immunosuppressive treatment, may manifest as paraneoplastic and non-paraneoplastic diseases. The most frequent tumors associated with PNS are (small cell) lung cancer, gynecological tumors, thymoma, lymphoma, and, in children, neuroblastoma. A special interest is given to PNS, induced by immune checkpoint-inhibitors (ICIs).Expert opinion: Research in PNS, including the group of ICI-induced PNS provide new insights in both the pathophysiology of PNS and tumor immune interactions and offers new treatment options for this group of severe neurological diseases.
Collapse
Affiliation(s)
- Franz Blaes
- Department of Neurology, KKH Gummersbach, Gummersbach, Germany
| |
Collapse
|
21
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
22
|
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H, Song Y. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 2021; 22:702. [PMID: 34007311 PMCID: PMC8120506 DOI: 10.3892/etm.2021.10134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator-activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.
Collapse
Affiliation(s)
- Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
23
|
Anagnostou E, Dimopoulou P, Zouvelou V, Karandreas N, Zambelis T. Jitter Remains Stable Throughout a Single Fiber EMG Session in Healthy and Myasthenic Muscles. J Neuromuscul Dis 2021; 8:295-298. [PMID: 33459661 DOI: 10.3233/jnd-200599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fatigability is the hallmark of myasthenia gravis (MG). It is not clear, however, whether there is an analogous increase in jitter during the course of a single fiber electromyography (SFEMG) session. The individual jitter values of all potentials of 76 normal and 44 myasthenic orbicularis oculi muscles were assigned a rank number according to their temporal order in which they were collected and linear regression was performed to determine if the slope of the regression line was significantly different from zero. Control and MG subjects displayed rather flat linear regression lines with non-significant positive or negative slopes. Accordingly, ROC analysis yielded areas under the curve near 0.5. We conclude that there is no systematic jitter increase during the collection of 20 potential pairs in a typical SFEMG session.
Collapse
Affiliation(s)
- Evangelos Anagnostou
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | - Panagiota Dimopoulou
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | - Vasiliki Zouvelou
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | - Nikolaos Karandreas
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | - Thomas Zambelis
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| |
Collapse
|
24
|
Barrantes FJ. Possible implications of dysregulated nicotinic acetylcholine receptor diffusion and nanocluster formation in myasthenia gravis. Neural Regen Res 2021; 16:242-246. [PMID: 32859770 PMCID: PMC7896218 DOI: 10.4103/1673-5374.290880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myasthenia gravis is a rare and invalidating disease affecting the neuromuscular junction of voluntary muscles. The classical form of this autoimmune disease is characterized by the presence of antibodies against the most abundant protein in the neuromuscular junction, the nicotinic acetylcholine receptor. Other variants of the disease involve autoimmune attack of non-receptor scaffolding proteins or enzymes essential for building or maintaining the integrity of this peripheral synapse. This review summarizes the participation of the above proteins in building the neuromuscular junction and the destruction of this cholinergic synapse by autoimmune aggression in myasthenia gravis. The review also covers the application of a powerful biophysical technique, superresolution optical microscopy, to image the nicotinic receptor in live cells and follow its motional dynamics. The hypothesis is entertained that anomalous nanocluster formation by antibody crosslinking may lead to accelerated endocytic internalization and elevated turnover of the receptor, as observed in myasthenia gravis.
Collapse
|
25
|
Blum TG, Misch D, Kollmeier J, Thiel S, Bauer TT. Autoimmune disorders and paraneoplastic syndromes in thymoma. J Thorac Dis 2020; 12:7571-7590. [PMID: 33447448 PMCID: PMC7797875 DOI: 10.21037/jtd-2019-thym-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thymomas are counted among the rare tumour entities which are associated with autoimmune disorders (AIDs) and paraneoplastic syndromes (PNS) far more often than other malignancies. Through its complex immunological function in the context of the selection and maturation of T cells, the thymus is at the same time highly susceptible to disruptive factors caused by the development and growth of thymic tumours. These T cells, which are thought to develop to competent immune cells in the thymus, can instead adopt autoreactive behaviour due to the uncontrolled interplay of thymomas and become the trigger for AID or PNS affecting numerous organs and tissues within the human body. While myasthenia gravis is the most prevalent PNS in thymoma, numerous others have been described, be they related to neurological, cardiovascular, gastrointestinal, haematological, dermatological, endocrine or systemic disorders. This review article sheds light on the pathophysiology, epidemiology, specific clinical features and therapeutic options of the various forms as well as courses and outcomes of AID/PNS in association with thymomas. Whenever suitable and backed by the limited available evidence, the perspectives from both the thymoma and the affected organ/tissue will be highlighted. Specific issues addressed are the prognostic significance of thymectomy on myasthenia gravis and other thymoma-associated AID/PND and further the impact and safety of immunotherapies on AID and PND relating to thymomas.
Collapse
Affiliation(s)
- Torsten Gerriet Blum
- Department of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel Misch
- Department of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Jens Kollmeier
- Department of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Sebastian Thiel
- Department of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Torsten T Bauer
- Department of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| |
Collapse
|
26
|
Barbeau S, Tahraoui-Bories J, Legay C, Martinat C. Building neuromuscular junctions in vitro. Development 2020; 147:147/22/dev193920. [PMID: 33199350 DOI: 10.1242/dev.193920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neuromuscular junction (NMJ) has been the model of choice to understand the principles of communication at chemical synapses. Following groundbreaking experiments carried out over 60 years ago, many studies have focused on the molecular mechanisms underlying the development and physiology of these synapses. This Review summarizes the progress made to date towards obtaining faithful models of NMJs in vitro We provide a historical approach discussing initial experiments investigating NMJ development and function from Xenopus to mice, the creation of chimeric co-cultures, in vivo approaches and co-culture methods from ex vivo and in vitro derived cells, as well as the most recent developments to generate human NMJs. We discuss the benefits of these techniques and the challenges to be addressed in the future for promoting our understanding of development and human disease.
Collapse
Affiliation(s)
- Susie Barbeau
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France
| | - Julie Tahraoui-Bories
- INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100 Corbeil-Essonnes, France
| | - Claire Legay
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100 Corbeil-Essonnes, France
| |
Collapse
|
27
|
Awsare S, Chirikian D, Lui F. Wound Botulism Caused by Botulinum Neurotoxin Type A in a Chronic Parenteral Drug Abuser. Case Rep Neurol 2020; 12:422-427. [PMID: 33362521 PMCID: PMC7747075 DOI: 10.1159/000510846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022] Open
Abstract
Botulism is an acute paralytic disease caused by botulinum neurotoxin (BoNT)-mediated inhibition of neurosignaling at the neuromuscular junction. BoNTs are produced by gram positive, anaerobic, spore-forming bacteria from the genus <i>Clostridium,</i>most commonly<i> Clostridium botulinum</i>. Over the last decade, a previously uncommon form of botulism, wound botulism, has increased in prevalence possibly due to the rise in parenteral drug abuse. A 53-year-old patient with a history of drug abuse presents to a rural emergency department with rapidly progressing lower extremity weakness over the past few days. He reports a recent heroin injection into right buttock and diffuse skin-popping scarring was observed throughout. The patient was treated with heptavalent botulinum antitoxin obtained from the Center for Disease Control and Prevention (CDC). A right thigh abscess culture was positive for<i> Clostridium tertium</i>, a left hip abscess culture was positive for methicillin-susceptible <i>Staphylococcus aureus</i> (MSSA), and blood culture confirmed multi-microbial bacteremia caused by <i>Staphylococcus epidermidis</i> and <i>Streptococcus mitis</i>. Serum analysis was positive for BoNT type A from a suspected concurrent<i> Clostridium botulinum</i> infection as <i>C. tertium</i> is not known to produce BoNT type A. This case report highlights the importance of early antitoxin treatment for patients with suspected wound botulism.
Collapse
Affiliation(s)
- Sohun Awsare
- *Sohun Awsare, California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA, 95757 (USA),
| | | | | |
Collapse
|
28
|
Castellanos-Montiel MJ, Velasco I, Escobedo-Avila I. Modeling the neuromuscular junction in vitro: an approach to study neuromuscular junction disorders. Ann N Y Acad Sci 2020; 1488:3-15. [PMID: 33040338 DOI: 10.1111/nyas.14504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized structure that works as an interface to translate the action potential of the presynaptic motor neuron (MN) in the contraction of the postsynaptic myofiber. The design of appropriate experimental models is essential to have efficient and reliable approaches to study NMJ development and function, but also to generate conditions that recapitulate distinct features of diseases. Initial studies relied on the use of tissue slices maintained under the same environment and in which single motor axons were difficult to trace. Later, MNs and muscle cells were obtained from primary cultures or differentiation of progenitors and cocultured as monolayers; however, the tissue architecture was lost. Current approaches include self-assembling 3D structures or the incorporation of biomaterials with cells to generate engineered tissues, although the incorporation of Schwann cells remains a challenge. Thus, numerous investigations have established different NMJ models, some of which are quite complex and challenging. Our review summarizes the in vitro models that have emerged in recent years to coculture MNs and skeletal muscle, trying to mimic the healthy and diseased NMJ. We expect our review may serve as a reference for choosing the appropriate experimental model for the required purposes of investigation.
Collapse
Affiliation(s)
- María José Castellanos-Montiel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
29
|
Abstract
Stem cell technology enables the production of three-dimensional organ-like structures, but engineering multi-tissue anatomy has proven difficult. In this issue of Cell Stem Cell, Martins et al. (2020) show that generating a common progenitor cell for posterior spinal cord and muscle enables the formation of functional neuromuscular junctions in single organoids.
Collapse
Affiliation(s)
- Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
30
|
Boehm I, Alhindi A, Leite AS, Logie C, Gibbs A, Murray O, Farrukh R, Pirie R, Proudfoot C, Clutton R, Wishart TM, Jones RA, Gillingwater TH. Comparative anatomy of the mammalian neuromuscular junction. J Anat 2020; 237:827-836. [PMID: 32573802 PMCID: PMC7542190 DOI: 10.1111/joa.13260] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The neuromuscular junction (NMJ)—a synapse formed between lower motor neuron and skeletal muscle fibre—represents a major focus of both basic neuroscience research and clinical neuroscience research. Although the NMJ is known to play an important role in many neurodegenerative conditions affecting humans, the vast majority of anatomical and physiological data concerning the NMJ come from lower mammalian (e.g. rodent) animal models. However, recent findings have demonstrated major differences between the cellular anatomy and molecular anatomy of human and rodent NMJs. Therefore, we undertook a comparative morphometric analysis of the NMJ across several larger mammalian species in order to generate baseline inter‐species anatomical reference data for the NMJ and to identify animal models that better represent the morphology of the human NMJ in vivo. Using a standardized morphometric platform (‘NMJ‐morph’), we analysed 5,385 individual NMJs from lower/pelvic limb muscles (EDL, soleus and peronei) of 6 mammalian species (mouse, cat, dog, sheep, pig and human). There was marked heterogeneity of NMJ morphology both within and between species, with no overall relationship found between NMJ morphology and muscle fibre diameter or body size. Mice had the largest NMJs on the smallest muscle fibres; cats had the smallest NMJs on the largest muscle fibres. Of all the species examined, the sheep NMJ had the most closely matched morphology to that found in humans. Taken together, we present a series of comprehensive baseline morphometric data for the mammalian NMJ and suggest that ovine models are likely to best represent the human NMJ in health and disease.
Collapse
Affiliation(s)
- Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Abrar Alhindi
- School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil.,Faculty of Medicine, Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ana S Leite
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Chandra Logie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Alyssa Gibbs
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Olivia Murray
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Rizwan Farrukh
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Robert Pirie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | | | - Richard Clutton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Rudell JC, Borges LS, Yarov-Yarovoy V, Ferns M. The MX-Helix of Muscle nAChR Subunits Regulates Receptor Assembly and Surface Trafficking. Front Mol Neurosci 2020; 13:48. [PMID: 32265653 PMCID: PMC7105636 DOI: 10.3389/fnmol.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric channels that mediate fast transmission at the neuromuscular junction (NMJ) and defects in receptor expression underlie neuromuscular disorders such as myasthenia gravis and congenital myasthenic syndrome (CMS). Nicotinic receptor expression at the NMJ is tightly regulated and we previously identified novel Golgi-retention signals in the β and δ subunit cytoplasmic loops that regulate trafficking of the receptor to the cell surface. Here, we show that the Golgi retention motifs are localized in the MX-helix, a juxta-membrane alpha-helix present in the proximal cytoplasmic loop of receptor subunits, which was defined in recent crystal structures of cys-loop receptor family members. First, mutational analysis of CD4-MX-helix chimeric proteins showed that the Golgi retention signal was dependent on both the amphipathic nature of the MX-helix and on specific lysine residues (βK353 and δK351). Moreover, retention was associated with ubiquitination of the lysines, and βK353R and δK351R mutations reduced ubiquitination and increased surface expression of CD4-β and δ MX-helix chimeric proteins. Second, mutation of these lysines in intact β and δ subunits perturbed Golgi-based glycosylation and surface trafficking of the AChR. Notably, combined βK353R and δK351R mutations increased the amount of surface AChR with immature forms of glycosylation, consistent with decreased Golgi retention and processing. Third, we found that previously identified CMS mutations in the ε subunit MX-helix decreased receptor assembly and surface levels, as did an analogous mutation introduced into the β subunit MX-helix. Together, these findings indicate that the subunit MX-helix contributes to receptor assembly and is required for normal expression of the AChR and function of the NMJ. In addition, specific determinants in the β and δ subunit MX-helix contribute to quality control of AChR expression by intracellular retention and ubiquitination of unassembled subunits, and by facilitating the appropriate glycosylation of assembled surface AChR.
Collapse
Affiliation(s)
- Jolene Chang Rudell
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Lucia Soares Borges
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Michael Ferns
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Beatmung bei neuromuskulären Erkrankungen. NEUROLOGISCHE BEATMUNGSMEDIZIN 2020. [PMCID: PMC7236064 DOI: 10.1007/978-3-662-59014-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuromuskuläre Erkrankungen betreffen das erste und zweite Motoneuron, die peripheren Nerven, die neuromuskulären Übertragung und die Muskelzelle. Es handelt sich um eine heterogene Gruppe von erblichen, degenerativen und autoimmunen Erkrankungen. Eine korrekte diagnostische Einordnung ist erforderlich, da zentralnervöse, kardiale, endokrine und weitere Begleitsymptome vorliegen können und für einige Erkrankungen bereits medikamentöse Therapien zur Verfügung stehen. Neuromuskuläre Erkrankungen haben eine große Bedeutung in der neuromuskulären Beatmungsmedizin. Die respiratorische Symptomatik resultiert in der Regel aus Paresen der am Atmen, Schlucken oder Husten beteiligten Muskulatur mit konsekutiver ventilatorischer Insuffienz, Dysphagie bis hin zur Speichelaspiration und Sekretretention. Mittels eines strukturierte Sekretmanagements und einer effektive nichtinvasive oder invasive Beatmungstherapie können neuromuskuläre Patienten viele Jahre mit guter Lebensqualität überleben. Themen dieses Kapitels sind ein Überblick über die neuromuskulären Erkrankungen, die Indikationen und Strategien der nichtinvasiven und der invasiven Beatmung und eine ausführliche Darstellung beatmungsmedizinisch besonders relevanter neuromuskulärer Erkrankungen wie der amyotrophe Lateralsklerose, des Guillain-Barré-Syndroms, der Myasthenia gravis und der Critical-Illness-Polyneuropathie/-Myopathie.
Collapse
|
33
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
34
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or other AChR-related proteins in the postsynaptic muscle membrane. Localized or general muscle weakness is the predominant symptom and is induced by the antibodies. Patients are grouped according to the presence of antibodies, symptoms, age at onset and thymus pathology. Diagnosis is straightforward in most patients with typical symptoms and a positive antibody test, although a detailed clinical and neurophysiological examination is important in antibody-negative patients. MG therapy should be ambitious and aim for clinical remission or only mild symptoms with near-normal function and quality of life. Treatment should be based on MG subgroup and includes symptomatic treatment using acetylcholinesterase inhibitors, thymectomy and immunotherapy. Intravenous immunoglobulin and plasma exchange are fast-acting treatments used for disease exacerbations, and intensive care is necessary during exacerbations with respiratory failure. Comorbidity is frequent, particularly in elderly patients. Active physical training should be encouraged.
Collapse
|
35
|
Petrov KA, Nikolsky EE, Masson P. Autoregulation of Acetylcholine Release and Micro-Pharmacodynamic Mechanisms at Neuromuscular Junction: Selective Acetylcholinesterase Inhibitors for Therapy of Myasthenic Syndromes. Front Pharmacol 2018; 9:766. [PMID: 30050445 PMCID: PMC6052098 DOI: 10.3389/fphar.2018.00766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular junctions (NMJs) are directly involved into such indispensable to life processes as respiration and locomotion. However, motor nerve forms only one synaptic contact at each muscle fiber. This unique configuration requires specific properties and constrains to be effective. The very high density of acetylcholine receptors (AChRs) of muscle type in synaptic cleft and an excess of acetylcholine (ACh) released under physiological conditions make this synapse extremely reliable. Nevertheless, under pathological conditions such as myasthenia gravis and congenital myasthenic syndromes, the safety factor can be markedly reduced. Drugs used for short-term symptomatic therapy of these pathological states, cause partial inhibition of cholinesterases (ChEs). These enzymes catalyze the hydrolysis of ACh, thus terminate its action on AChRs. Extension of the lifetime of ACh molecules compensates muscular AChRs abnormalities and, consequently, rescues muscle contractions. In this mini review, we will first outline the functional organization of the NMJ, and then, consider the concept of the safety factor and how it may be changed. This will be followed by a look at autoregulation of ACh release that influences the safety factor of NMJs. Finally, we will consider the morphological features of NMJs as a putative reserve to increase effectiveness of pathological muscle weakness therapy by ChEs inhibitors due to opportunity to use micro-pharmacodynamic mechanisms.
Collapse
Affiliation(s)
- Konstantin A Petrov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.,Neuropharmacology Lab, Kazan Federal University, Kazan, Russia
| | - Evgeny E Nikolsky
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Patrick Masson
- Neuropharmacology Lab, Kazan Federal University, Kazan, Russia
| |
Collapse
|
36
|
Bernadzki KM, Gawor M, Pęziński M, Mazurek P, Niewiadomski P, Rędowicz MJ, Prószyński TJ. Liprin-α-1 is a novel component of the murine neuromuscular junction and is involved in the organization of the postsynaptic machinery. Sci Rep 2017; 7:9116. [PMID: 28831123 PMCID: PMC5567263 DOI: 10.1038/s41598-017-09590-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023] Open
Abstract
Neuromuscular junctions (NMJs) are specialized synapses that connect motor neurons to skeletal muscle fibers and orchestrate proper signal transmission from the nervous system to muscles. The efficient formation and maintenance of the postsynaptic machinery that contains acetylcholine receptors (AChR) are indispensable for proper NMJ function. Abnormalities in the organization of synaptic components often cause severe neuromuscular disorders, such as muscular dystrophy. The dystrophin-associated glycoprotein complex (DGC) was shown to play an important role in NMJ development. We recently identified liprin-α-1 as a novel binding partner for one of the cytoplasmic DGC components, α-dystrobrevin-1. In the present study, we performed a detailed analysis of localization and function of liprin-α-1 at the murine NMJ. We showed that liprin-α-1 localizes to both pre- and postsynaptic compartments at the NMJ, and its synaptic enrichment depends on the presence of the nerve. Using cultured muscle cells, we found that liprin-α-1 plays an important role in AChR clustering and the organization of cortical microtubules. Our studies provide novel insights into the function of liprin-α-1 at vertebrate neuromuscular synapses.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Paula Mazurek
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Maria J Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland.
| |
Collapse
|
37
|
Takamori M. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 2017; 18:ijms18040896. [PMID: 28441759 PMCID: PMC5412475 DOI: 10.3390/ijms18040896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR) clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication), low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling), laminin-network (including muscle-derived agrin), extracellular matrix proteins (participating in the synaptic stabilization) and presynaptic receptors (including muscarinic and adenosine receptors), we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Masaharu Takamori
- Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Ishikawa 920-0025, Japan.
| |
Collapse
|
38
|
Affiliation(s)
- Nils E Gilhus
- From the Department of Clinical Medicine, University of Bergen, and the Department of Neurology, Haukeland University Hospital - both in Bergen, Norway
| |
Collapse
|
39
|
Classification of neuromuscular disorders using features extracted in the wavelet domain of sEMG signals: a case study. HEALTH AND TECHNOLOGY 2016. [DOI: 10.1007/s12553-016-0153-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes. Sci Rep 2016; 6:36498. [PMID: 27812002 PMCID: PMC5095645 DOI: 10.1038/srep36498] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
In contrast to the extensive use of microelectrode array (MEA) technology in electrophysiological studies of cultured neurons and cardiac muscles, the vast field of skeletal muscle research has yet to adopt the technology. Here we demonstrate an empowering MEA technology for high quality, multisite, long-term electrophysiological recordings from cultured skeletal myotubes. Individual rat skeletal myotubes cultured on micrometer sized gold mushroom-shaped microelectrode (gMμE) based MEA tightly engulf the gMμEs, forming a high seal resistance between the myotubes and the gMμEs. As a consequence, spontaneous action potentials generated by the contracting myotubes are recorded as extracellular field potentials with amplitudes of up to 10 mV for over 14 days. Application of a 10 ms, 0.5-0.9 V voltage pulse through the gMμEs electroporated the myotube membrane, and transiently converted the extracellular to intracellular recording mode for 10-30 min. In a fraction of the cultures stable attenuated intracellular recordings were spontaneously produced. In these cases or after electroporation, subthreshold spontaneous potentials were also recorded. The introduction of the gMμE-MEA as a simple-to-use, high-quality electrophysiological tool together with the progress made in the use of cultured human myotubes opens up new venues for basic and clinical skeletal muscle research, preclinical drug screening, and personalized medicine.
Collapse
|