1
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Sharma HS, Sharma A. Preface. PROGRESS IN BRAIN RESEARCH 2021; 266:xxi-xxx. [PMID: 34689868 DOI: 10.1016/s0079-6123(21)00197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Traumatic brain injury modifies synaptic plasticity in newly-generated granule cells of the adult hippocampus. Exp Neurol 2020; 336:113527. [PMID: 33188818 DOI: 10.1016/j.expneurol.2020.113527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023]
Abstract
The hippocampus is vulnerable to traumatic brain injury (TBI), and hippocampal damage is associated with cognitive deficits that are often the hallmark of TBI. Recent studies have found that TBI induces enhanced neurogenesis in the dentate gyrus (DG) of the hippocampus, and this cellular response is related to innate cognitive recovery. However, cellular mechanisms of the role of DG neurogenesis in post-TBI recovery remain unclear. This study investigated changes in long-term potentiation (LTP) within the DG in relation to TBI-induced neurogenesis. Adult male rats received a moderate TBI or sham injury and were sacrificed for brain slice recordings at 30 or 60 days post-injury. Recordings were taken from the medial perforant path input to DG granule cells in the presence or absence of the GABAergic antagonist picrotoxin, reflecting activity of either all DG granule cells or predominately newborn granule cells, respectively. Measurements of LTP observed in the total granule cell population (with picrotoxin) showed a prolonged impairment which worsened between 30 and 60 days post-TBI. Under conditions which predominantly reflected the LTP elicited in newly born granule cells (no picrotoxin), a strikingly different pattern of post-TBI changes was observed, with a time-dependent cycle of functional impairment and recovery. At 30 days after injury this cell population showed little or no LTP, but by 60 days the capacity for LTP of the newly born granule cells was no different from that of sham controls. The time-frame of LTP improvements in the newborn cell population, comparable to that of behavioral recovery reported previously, suggests the unique functional properties of newborn granule cells enable them to contribute to restorative change following brain injury.
Collapse
|
4
|
Prochazkova M, Tintera J, Spanhelova S, Prokopiusova T, Rydlo J, Pavlikova M, Prochazka A, Rasova K. Brain activity changes following neuroproprioceptive "facilitation, inhibition" physiotherapy in multiple sclerosis: a parallel group randomized comparison of two approaches. Eur J Phys Rehabil Med 2020; 57:356-365. [PMID: 32935954 DOI: 10.23736/s1973-9087.20.06336-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Imaging methods bring new possibilities for describing the brain plasticity processes that underly the improvement of clinical function after physiotherapy in people with multiple sclerosis (pwMS). Although these processes have been described mainly in connection with task-oriented physiotherapy and aerobic training, they have not been properly verified in neuroproprioceptive "facilitation, inhibition" (facilitation) approaches. AIM The study determined whether facilitation physiotherapy could enhance brain plasticity, compared two facilitation methods and looked for any relation to clinical improvement in pwMS. DESIGN The study was designed as parallel group randomized comparison of two kinds of physiotherapeutic interventions referred to healthy controls. SETTING Thirty-eight outpatients were involved in the study. POPULATION The study had 80 participants (38 pwMS and 42 healthy controls). METHODS PwMS were divided into two groups and underwent a two-month physiotherapy program: Vojta reflex locomotion (VRL) or Motor program activating therapy (MPAT), (1 hour, twice a week). Functional magnetic resonance imaging (fMRI) and clinical examination was performed before and after therapy. Healthy controls underwent one fMRI examination. RESULTS Physiotherapy in pwMS leads to extension of brain activity in specific brain areas (cerebellum, supplementary motor areas and premotor areas) in connection with the improvement of the clinical status of individual patients after therapy (P=0.05). Greater changes (P=0.001) were registered after MPAT than after VRL. The extension of activation was a shift to the examined activation of healthy controls, whose activation was higher in the cerebellum and secondary visual area (P=0.01). CONCLUSIONS Neuroproprioceptive "facilitation, inhibition" physiotherapy may enhance brain activity and could involve processes connected with the processing of motion activation. CLINICAL REHABILITATION IMPACT The study showed that facilitation approach can modulate brain activity. This could be useful for developing of effective physiotherapeutic treatment in MS.
Collapse
Affiliation(s)
- Marie Prochazkova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Tintera
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sarka Spanhelova
- Department of Rehabilitation, Motol Faculty Hospital, Prague, Czech Republic
| | - Terezie Prokopiusova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Rydlo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Antonin Prochazka
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Rasova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic -
| |
Collapse
|
5
|
Gelfo F. Does Experience Enhance Cognitive Flexibility? An Overview of the Evidence Provided by the Environmental Enrichment Studies. Front Behav Neurosci 2019; 13:150. [PMID: 31338030 PMCID: PMC6629767 DOI: 10.3389/fnbeh.2019.00150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity accounts for the ability of the brain to change in both structure and function in consequence of life experiences. An enhanced stimulation provided by the environment is able to create a form of brain, neural, and cognitive reserve, which allows an individual to cope better with the environmental demands, also in case of neural damage leading to cognitive decline. With its complex manipulation of several stimuli, the animal experimental paradigm of environmental enrichment (EE) appears particularly effective in modulating the ability to successfully respond to the ever-changing characteristics of the environment. According to this point, it could be very relevant to analyze the specific effects of EE on cognitive flexibility (CF). CF could be defined as the ability to effectively change behavior in response to the environmental condition changing. This review article is specifically aimed to summarize and focus on the available evidence in relation to the effects of EE on CF. To this aim, findings obtained in behavioral tasks specifically structured to investigate animal CF, such as reversal learning and attentional set-shifting tests (tasks based on the request of responding to a rewarding rule that changes, within one or multiple perceptual dimensions), are reviewed. Data provided on the structural and biochemical correlates of these findings are also enumerated. Studies realized in healthy animals and also in pathological models are considered. On the whole, the summarized evidence clearly supports the specific beneficial effects of EE on CF. However, further studies on this key topic are strictly required to gain a comprehensive and detailed framework on the mechanisms by which an enhanced stimulation could improve CF.
Collapse
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy.,Department of Clinical and Behavioural Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
6
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
7
|
Howell S, Griesbach GS. The interplay between neuroendocrine and sleep alterations following traumatic brain injury. NeuroRehabilitation 2019; 43:327-345. [PMID: 30347624 DOI: 10.3233/nre-182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sleep and endocrine disruptions are prevalent after traumatic brain injury (TBI) and are likely to contribute to morbidity. OBJECTIVE To describe the interaction between sleep and hormonal regulation following TBI and elucidate the impact that alterations of these systems have on cognitive responses during the posttraumatic chronic period. METHODS Review of preclinical and clinical literature describing long-lasting endocrine dysregulation and sleep alterations following TBI. The bidirectional relationship between sleep and hormones is described. Literature describing co-occurrence between sleep-wake disturbances and hormonal dysregulation will be presented. Review of literature describing cognitive effects of seep and hormones. The cognitive and functional impact of sleep disturbances and hormonal dysregulation is discussed within the context of TBI. RESULTS/CONCLUSIONS Sleep and hormonal alterations impact cognitive and functional outcome after TBI. Diagnosis and treatment of these disturbances will impact recovery following TBI and should be considered in the post-acute rehabilitative setting.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Encino, CA, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Prevention Strategies in Post-TBI Depression in Older Adults: A Case Study. Prof Case Manag 2018; 22:284-290. [PMID: 29016420 DOI: 10.1097/ncm.0000000000000224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to describe a theoretically focused intervention aimed toward chronic stress and depressive symptom management that is coordinated by a case manager and delivered within a home environment by the caregiver. PRIMARY PRACTICE SETTING Home care, community setting. METHODS A case study of an older adult with traumatic brain injury (TBI) secondary to a fall who had significant allostatic load at the time of his injury. "Allostatic load" is a theoretical construct that suggests the brain is experiencing chronic strain on its systems that flexibly respond to stressors. Sustained allostatic load can contribute to chronic conditions and poor outcomes. FINDINGS Through actions with the family as caregivers, the case manager was able to coordinate a structured home setting and gradual resumption of social activities for this older adult. Focus was on establishing structure, meaningful social interactions, and positive home experiences that maximized the older adult's interests and capacity and mitigated chronic stress. Gradually, the older adult returned to his preinjury capacity and lives independently within the family home. IMPLICATIONS FOR CASE MANAGEMENT PRACTICE The case management process has the potential to mitigate stressors and improve depression management through family-focused care. Although there is limited guidance on prevention of depression, this approach resulted in attainment of safe home care, no hospital readmissions, and return to previous lifestyle for the older adult. This could be useful in the prevention of post-TBI depression.
Collapse
|
9
|
Pischiutta F, Micotti E, Hay JR, Marongiu I, Sammali E, Tolomeo D, Vegliante G, Stocchetti N, Forloni G, De Simoni MG, Stewart W, Zanier ER. Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury. Exp Neurol 2017; 300:167-178. [PMID: 29126888 DOI: 10.1016/j.expneurol.2017.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/29/2023]
Abstract
There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: -30%) and external capsule (EC: -21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (-17%) and EC (-13%), corresponding to histopathological evidence of white matter loss (cl-CC: -68%; cl-EC: -30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jennifer R Hay
- Institute of Neuroscience and Psychology, University of Glasgow, UK; Department of Laboratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ines Marongiu
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eliana Sammali
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gloria Vegliante
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Nino Stocchetti
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy; ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, UK; Department of Laboratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
10
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
11
|
The interplay between neuropathology and activity based rehabilitation after traumatic brain injury. Brain Res 2016; 1640:152-163. [DOI: 10.1016/j.brainres.2016.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
|