1
|
Qi Y, Gong H, Shen Z, Wu L, Xu Z, Shi N, Lin K, Tian M, Xu Z, Li X, Zhao Q. TRPM8 and TRPA1 ideal targets for treating cold-induced pain. Eur J Med Chem 2025; 282:117043. [PMID: 39571458 DOI: 10.1016/j.ejmech.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
TRP channels are essential for detecting variations in external temperature and are ubiquitously expressed in both the peripheral and central nervous systems as integral channel proteins. They primarily mediate a range of sensory responses, including thermal sensations, nociception, mechanosensation, vision, and gustation, thus playing a critical role in regulating various physiological functions. In colder climates, individuals often experience pain associated with low temperatures, leading to significant discomfort. Within the TRP channel family, TRPM8 and TRPA1 ion channels serve as the primary sensors for cold temperature fluctuations and are integral to both cold nociception and neuropathic pain pathways. Recent advancements in the biosynthesis of inhibitors targeting TRPM8 and TRPA1 have prompted the need for a comprehensive review of their structural characteristics, biological activities, biosynthetic pathways, and chemical synthesis. This paper aims to delineate the distinct roles of TRPM8 and TRPA1 in pain perception, elucidate their respective protein structures, and compile various combinations of TRPM8 and TRPA1 antagonists and agonists. The discussion encompasses their chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, with a particular focus on the conformational relationships between antagonists and the channels. This review seeks to provide in-depth insights into pharmacological strategies for managing pain associated with TRPM8 and TRPA1 activation and will pave the way for future investigations into pharmacotherapeutic approaches for alleviating cold-induced pain.
Collapse
Affiliation(s)
- Yiming Qi
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zixian Shen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Limeng Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zonghe Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Nuo Shi
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Kexin Lin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Meng Tian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zihua Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| |
Collapse
|
2
|
Zhao Y, Liu J, Ding Z, Ge W, Wang S, Zhang J. ATP-induced hypothermia improves burn injury and relieves burn pain in mice. J Therm Biol 2023; 114:103563. [PMID: 37344025 DOI: 10.1016/j.jtherbio.2023.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/23/2023]
Abstract
Thermal burn injury is a severe and life-threatening form of trauma that presents a significant challenge to clinical therapy. Therapeutic hypothermia has been shown to be beneficial in various human pathologies. Adenosine triphosphate (ATP) induces a hypothermic state that resembles hibernation-like suspended animation in mammals. This study investigates the potential protective role of ATP-induced hypothermia in thermal burn injury. Male C57BL/6 mice underwent a sham procedure or third-degree burn, and ATP-induced hypothermia was applied immediately or 1 h after burn injury. Our results show that ATP-induced hypothermia significantly improved burn depth progression and reduced collagen degradation. Moreover, hypothermia induced by ATP alleviated burn-induced hyperinflammatory responses and oxidative stress. Metabolomic profiling revealed that ATP-induced hypothermia reversed the shifts of metabolic profiles of the skin in burn mice. In addition, ATP-induced hypothermia relieved nociceptive and inflammatory pain, as observed in the antinociceptive test. Our findings suggest that ATP-induced hypothermia attenuates burn injury and provides new insights into first-aid therapy after thermal burn injury.
Collapse
Affiliation(s)
- Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
3
|
Qu X, Shang F, Zhao H, Qi M, Cheng W, Xu Y, Jiang L, Chen W, Wang N, Zhang H. Targeted temperature management at 33 degrees Celsius in patients with high-grade aneurysmal subarachnoid hemorrhage: a protocol for a multicenter randomized controlled study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:581. [PMID: 33987279 DOI: 10.21037/atm-20-4719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Studies on the use of therapeutic hypothermia (TH) to improve the outcome of high-grade aneurysmal subarachnoid hemorrhage (aSAH), show promising, though conflicting results because of the lack of high-quality trials. The aim of this study is to evaluate the safety and efficacy of TH (maintaining bladder temperature at 33 °C for ≥72 h) to treat patients with high-grade aSAH (Hunt-Hess grade IV-V). Methods A multicenter, randomized, controlled clinical trial will be conducted for October 2020 to September 2024 involving 10 clinics. Patients who meet the inclusion criteria will be randomized 1:1 to a TH group and a normothermia group. The trial will enroll 96 participants in TH group and normothermia one, respectively. The trial was registered with ClinicalTrials.gov (NCT03442608) on February 22, 2018. Following conventional treatment for aSAH, patients will undergo either TH for at least 72 h or normothermia. The primary endpoint is the Glasgow outcome scale at 6 months after bleeding. The secondary endpoints are: (I) mortality at 6 months after bleeding; (II) intracranial pressure; (III) intensive care unit stay; and (IV) hospital stay. The safety endpoints include neurological, infectious, intestinal, circulatory, coagulation, and bleeding complications, electrolyte disorders, and other complications. Discussion If the study hypothesis is confirmed, TH at 33 °C in patients with high-grade aSAH may become a promising treatment strategy for improving 6-month outcome. Trial registration The trial has been registered at ClinicalTrials.gov (ID: NCT03442608).
Collapse
Affiliation(s)
- Xin Qu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Feng Shang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hao Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Qi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weitao Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueqiao Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lidan Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yang HJ, Shi X, Ju F, Hao BN, Ma SP, Wang L, Cheng BF, Wang M. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP +-Induced Neurotoxicity. Front Neurosci 2018; 12:298. [PMID: 29773975 PMCID: PMC5943555 DOI: 10.3389/fnins.2018.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | | | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|