1
|
Lotze M, Klepzig K, Stephan T, Domin M, Brandt T, Dieterich M. Overlaps of fMRI activation patterns of the anxiety-emotional and the vestibular-sensory networks. Neuroimage 2025; 315:121275. [PMID: 40389147 DOI: 10.1016/j.neuroimage.2025.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025] Open
Abstract
Clinical and meta-analytic imaging data suggest a considerable overlap between vestibular-sensory and anxiety-emotional processing networks. We therefore examined functional MRI activation using galvanic vestibular stimulation (GVS) and a fear conditioning paradigm in the same 28 healthy individuals. This study was to proof the effects of both stimulations in the same individual whereas our earlier meta-analytical analysis compared groups of participants who had received only one or the other stimulation. In the actual study we further assessed subjective experience (expectancy ratings, questionnaires) and autonomic arousal (skin conductance response; SCR). Activation patterns during vestibular stimulation confirmed previous findings showing highest fMRI-activation in the parieto-insular vestibular cortex. Fear conditioning activated the anterior insula, secondary somatosensory cortex (S2) and thalamus. A conjunction of fMRI-activation maps for both stimulation paradigms revealed bilateral anterior and posterior insula, dorsolateral prefrontal cortex and S2 as well as cerebellar hemisphere fMRI-activation. Regression analyses showed a high positive association of left anterior insular activation during the fear extinction period with trait anxiety. The vestibular intensity during GVS was positively associated with right ventro-lateral prefrontal cortex (PFC) fMRI-activation. This is compatible with the earlier hypothesized top-down regulation of vestibular perception which involves the PFC beneficial for suppression of unusual vestibular excitation or vertigo related to vestibular disorders.
Collapse
Affiliation(s)
- M Lotze
- Functional Imaging, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald, D-17475, Germany.
| | - K Klepzig
- Functional Imaging, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald, D-17475, Germany
| | - T Stephan
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Munich, Germany; Department of Neurology, LMU University Hospital, Munich, Germany
| | - M Domin
- Functional Imaging, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald, D-17475, Germany
| | - T Brandt
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Munich, Germany
| | - M Dieterich
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Munich, Germany; Department of Neurology, LMU University Hospital, Munich, Germany; SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
2
|
Cedras AM, Dion J, Saj A, Champoux F, Maheu M. Vestibular Agnosia: Toward a Better Understanding of Its Mechanisms. Audiol Res 2025; 15:15. [PMID: 39997159 PMCID: PMC11851400 DOI: 10.3390/audiolres15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Vestibular agnosia is characterized by a reduced or absent self-motion perception while demonstrating the presence of normal peripheral vestibular function following stimulation. This condition has previously been reported by previous authors in different populations and more recently in traumatic brain injury patients. However, the underlying mechanisms responsible for vestibular agnosia remain a matter of debate. The objective of this manuscript is to review and compare the behavioral and neuroanatomical findings in populations where vestibular agnosia has been demonstrated to better understand the underlying mechanism. Methods: A review of the literature was conducted using four databases: Medline, Embase, Google Scholar, and PubMed. A normal vestibulo-ocular reflex function with an impaired self-motion perception following vestibular stimulation represented the inclusion criteria used. Results: Behavioral data reviewed in the studies revealed a clear association with postural instability. However, no consensus can be drawn from neuroanatomical data due to variability in brain impairments in those populations even though impairments in the parietal cortex are often reported. Conclusions: In general, behavioral data and neuroanatomical data regarding vestibular agnosia have been poorly documented throughout the literature. However, vestibular agnosia can be observed in different populations and is present in concomitant postural control deficits, an important predictor of falls. Finally, even though the parietal cortex has been associated with vestibular agnosia, future studies are required to adequately identify the underlying mechanism. Indeed, the parietal cortex could be part of a larger network mediating vestibular agnosia. This review proposes various methods that future studies should use to overcome the present limitations.
Collapse
Affiliation(s)
- Assan Mary Cedras
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, QC H3N 1X7, Canada; (A.M.C.); (J.D.); (F.C.)
- Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H2H 1C4, Canada
| | - Jonathan Dion
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, QC H3N 1X7, Canada; (A.M.C.); (J.D.); (F.C.)
- Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H2H 1C4, Canada
| | - Arnaud Saj
- Psychology Department, University of Montreal, Montreal, QC H2V 2S9, Canada;
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC J4K 5G4, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et L’apprentissage (CIRCA), University of Montréal, Montreal, QC H3C 3J7, Canada
| | - François Champoux
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, QC H3N 1X7, Canada; (A.M.C.); (J.D.); (F.C.)
| | - Maxime Maheu
- School of Speech Language Pathology and Audiology, Montreal University, Montreal, QC H3N 1X7, Canada; (A.M.C.); (J.D.); (F.C.)
- Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H2H 1C4, Canada
| |
Collapse
|
3
|
Patel K, Stotter J, Pali MC, Giannopulu I. Imagine going left versus imagine going right: whole-body motion on the lateral axis. Sci Rep 2024; 14:31558. [PMID: 39738135 PMCID: PMC11686341 DOI: 10.1038/s41598-024-57220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 01/01/2025] Open
Abstract
Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery. Following the experimental procedure, 36 healthy participants were instructed and trained to imagine moving left and right from a first-person perspective. On average, greater beta oscillatory activity in the parietal region was observed during right motor imagery compared to left motor imagery. Furthermore, lateral whole-body motion imagery is associated with the posterior multimodal somatosensory parietal areas, which showed significantly more prominent cortico-cortical interconnections when performing right than left motor imagery, as indicated by Phase-Locked Value (PLV) analysis. The findings suggest that the mental simulation of lateral movements, reflecting immature neurocognitive schemata, might engender non-grounded and non-embedded somatosensory and kinesthetic representations that would be associated with the lateralisation of the multimodal cortical vestibular network.
Collapse
Affiliation(s)
- K Patel
- School of Human Sciences and Humanities, University of Houston, Houston, 77001, USA
| | - J Stotter
- Interdisciplinary Centre for the Artificial Mind (iCAM), Robina, 4229, Australia
| | - M C Pali
- Research Centre On Stroke Rehabilitation, MUI, 6020, Innsbruck, Austria
| | - I Giannopulu
- Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
- Clinical Research and Technological Innovation, 75016, Paris, France.
| |
Collapse
|
4
|
Rosengren SM, Nham B, Lim J, Parlane R, Dyball AC, Reid N, Halmagyi GM, Welgampola MS. Spatial numerical bias in acute vestibular neuritis. J Neurol 2024; 272:66. [PMID: 39680208 DOI: 10.1007/s00415-024-12844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Number magnitude is often represented spatially in the mind by a mental number line, on which small numbers are located to the left of space and large numbers to the right. As vestibular dysfunction can affect aspects of spatial cognition, we wondered whether patients with acute vestibular loss would show a directional bias along the mental number line. METHODS We gave 18 patients with vestibular neuritis (VN) (eight left VN, ten right; mean age 54 years, range 31-75 years; four females) and 15 normal age- and education-matched controls (mean age 47 years, range 26-75 years; 11 females) a mental number bisection task. RESULTS The patients with left VN underestimated the middle number (mean sum of signed errors -3.3, SE 1.5), while patients with right VN overestimated it (mean 1.9, SE 0.7). The direction of effect aligned with the direction of slow phase velocity. The results for the normal controls fell in between the two patient groups, and represented an underestimate of the middle number (mean -1.5, SE 0.8). In the patients, the effect was greater without visual fixation and in the acute stage compared to 1 or 2 weeks later. The error rates were similar across all groups and conditions. CONCLUSIONS Our results show that acute vestibular loss produces a temporary directional bias in numerical processing that is only present in the absence of visual cues. The effect is similar to that seen in patients with visuospatial neglect.
Collapse
Affiliation(s)
- Sally M Rosengren
- Neurology Department, Royal Prince Alfred Hospital, Level 8, Missenden Rd, Camperdown, NSW, 2050, Australia.
- Central Clinical School, University of Sydney, Sydney, Australia.
| | - Benjamin Nham
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Jasmine Lim
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Rengen Parlane
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Alyssa C Dyball
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Nicole Reid
- Neurology Department, Royal Prince Alfred Hospital, Level 8, Missenden Rd, Camperdown, NSW, 2050, Australia
| | - G Michael Halmagyi
- Neurology Department, Royal Prince Alfred Hospital, Level 8, Missenden Rd, Camperdown, NSW, 2050, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Miriam S Welgampola
- Neurology Department, Royal Prince Alfred Hospital, Level 8, Missenden Rd, Camperdown, NSW, 2050, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Grill E, Zwergal A, Saur D, Klingbeil J, Fricke C, Schöberl F, Felfela K, Zülke A, Riedel-Heller S, Classen J. Postural imbalance without visual input is associated with specific neuropsychological deficits in older adults - results from the LIFE-adult study. Front Neurol 2024; 15:1452150. [PMID: 39726764 PMCID: PMC11670201 DOI: 10.3389/fneur.2024.1452150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Modifiable risk factors play an important role in preventing dementia and reducing its progression. Regular physical activity already in midlife, which relies on intact multisensory balance control, can help to decrease the risk of dementia. However, our understanding of the relationship between postural balance and cognitive functions remains limited. The objective of our study was to investigate the association of postural balance during different sensory conditions with specific cognitive domains in older adults. Methods Participants were from the population-based prospective "Leipzig Research Center for Civilization Diseases" (LIFE-Adult) cohort in Leipzig, Germany. Executive, memory and processing speed functions were tested by the Consortium to Establish a Registry for Alzheimer's disease (CERAD) plus battery. Assessment of visuospatial abilities was based on the short form of the Judgment of Line Orientation Test (JLO). Postural sway was recorded on a force plate with eyes open and closed. Romberg's ratios were calculated for sway path and sway area as a proxy for balance without visual control and tested in generalized linear regression models with the summary scores of executive function, memory, processing speed and visuospatial function as dependent variables. All models were adjusted for sex, age, ApoE status, socioeconomic status, anamnestic stroke, and diabetes. Results In total, we analyzed 460 participants with a mean age of 68.6 years, range 60 to 80, 47.6% female. A higher Romberg's ratio for sway area was a significant indicator for impaired visuospatial abilities as measured by the dichotomized JLO (Odds Ratio = 1.42, 95% confidence interval 1.07 to 1.88). Romberg's ratios were not significantly associated with executive functions, procedural speed or memory functions. Discussion It may be worthwhile to examine in the future whether inclusion of balance testing enhances the value of screening programs for cognitive impairment. Inversely, it may be appropriate to apply routine cognitive tests when balance problems are detected in older patients.
Collapse
Affiliation(s)
- Eva Grill
- Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
- Department of Neurology, LMU University Hospital, Munich, Germany
| | - Dorothee Saur
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Julian Klingbeil
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Florian Schöberl
- Department of Neurology, LMU University Hospital, Munich, Germany
| | - Karim Felfela
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
- Department of Neurology, LMU University Hospital, Munich, Germany
| | - Andrea Zülke
- Institute for Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Steffi Riedel-Heller
- Institute for Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
6
|
Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, Qiao C, Jiang H, Guo J, Zhou Z, Luo Q, Shi S, Yao H, Lu Y, Zhang S. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024; 30:e70037. [PMID: 39268632 PMCID: PMC11393560 DOI: 10.1111/cns.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Yao
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Chen Z, Cai Y, Liu Y, Liu H, Wei XE, Lin C, Liu D, Xiao L, Rong L. Altered thalamus functional connectivity in patients with acute unilateral vestibulopathy: a resting-state fMRI study. Front Neurosci 2024; 18:1388213. [PMID: 39010942 PMCID: PMC11246849 DOI: 10.3389/fnins.2024.1388213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Objective Acute unilateral vestibulopathy (AUVP) is the second leading cause of peripheral vestibular vertigo. Full recovery of AUVP is related to sufficient central vestibular compensation. It has been confirmed that the vestibular nucleus and vestibular cortex are involved in the process of vestibular compensatory in AUVP patients. However, few studies have focused on the functional compensation of thalamus in patients with AUVP. This study aimed to explore the alterations of resting-state functional connectivity (FC) focused on thalamus using functional magnetic resonance imaging (fMRI) in AUVP patients. Methods Data of 3D-T1 and resting-state fMRI were collected from 40 AUVP patients and 35 healthy controls (HC). Seeds-based (bilateral thalamus) FC was analyzed to investigate the changes in FC between the two groups. Furthermore, we evaluated the associations between altered thalamus FC and clinical features in AUVP patients using Pearson's partial correlation. Results Compared with HC, AUVP patients showed decreased FC between bilateral thalamus and left insula. We also observed decreased FC between right thalamus and left supramarginal gyrus. Additionally, we found increased FC between left thalamus and right postcentral gyrus (PCG), as well as increased FC between right thalamus and regions of bilateral PCG, right middle frontal gyrus and right middle occipital gyrus in AUVP patients. Furthermore, the FC between left thalamus and left insula was negatively correlated with values of canal paresis in patients with AUVP (p = 0.010, r = -0.434). Conclusion Our results provided first evidence for the decreased thalamo-vestibular cortex pathway, as well as increased thalamo-somatosensory and thalamo-visual cortex pathway in AUVP patients. These findings help us better understand the underlying mechanisms of central dynamic compensatory following an acute unilateral peripheral vestibular damage.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaxian Cai
- Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu-e Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Ciocca M, Jameel A, Yousif N, Patel N, Smith J, Akgun S, Jones B, Gedroyc W, Nandi D, Tai Y, Seemungal BM, Bain P. Illusions of Self-Motion during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor. Ann Neurol 2024; 96:121-132. [PMID: 38709569 DOI: 10.1002/ana.26945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Ayesha Jameel
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Neekhil Patel
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Joely Smith
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sena Akgun
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Brynmor Jones
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wlayslaw Gedroyc
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dipankar Nandi
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Yen Tai
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Peter Bain
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Delibaş Kati Ş, Palaz EA, Güneş Gencer Y, Hekim HH, Temel Aksu N, Yaman A, Toraman NF. The effect of hemispheric lesion location on trunk control. Medicine (Baltimore) 2024; 103:e38589. [PMID: 38941400 PMCID: PMC11466085 DOI: 10.1097/md.0000000000038589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Trunk control is the basic component of postural control, and achieving trunk control is a complex process that can be achieved by dynamically building and maintaining neuromuscular function. Lateropulsion, which is also defined as the body falling to one side, is considered an important condition that is frequently encountered after stroke and affects trunk control. It is known that there are differences in the regulation of postural control and trunk control according to hemispheric localization. We had a very specific group of patients and tried to find out the outcomes prospectively in this study. METHODS The patients were divided into 2 groups those with right hemisphere lesions (Group 1) and those with left hemisphere lesions (Group 2). Comorbidity and cognitive function were evaluated using the Charlson Comorbidity Index (CMI) and Standardized Mini-Mental State Test (SMMSE). Activities of daily living were evaluated using the Turkish version of the Modified Barthel Index (MBI). The Stroke Rehabilitation Assessment of Movement Instrument (STREAM) test was used to assess trunk control and the Brunnstrom (BS) test was used to assess motor functions. RESULTS There was a significant difference between Groups 1 and 2 in terms of STREAM in lower extremity scores were higher in Group 2 (P < .05). The number of patients in BS lower extremity Stages IV-VI was higher in Group 1 and Group 2 (P < .05). It was determined that upper extremity, lower extremity and Total STREAM scores and BS Hand stage in Group 2 were significantly higher than Group 1 in patients with total middle cerebral artery (MCA) affected(P < .05). CONCLUSION It was determined that trunk control was more affected in patients with right hemispheric lesions. Additionally, trunk control is significantly affected in patients with total MCA lesions.
Collapse
Affiliation(s)
- Şennur Delibaş Kati
- Department of Neurology, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| | - Elif Ayşen Palaz
- Private Artrolife Clinic, Physical Medicine and Rehabilitation, Antalya, Türkiye
| | - Yağmur Güneş Gencer
- Department of Gerontology, Akdeniz University, Faculty of Health Sciences, Antalya, Türkiye
| | - Hanife Hale Hekim
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| | - Neriman Temel Aksu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Akdeniz University, Antalya, Türkiye
| | - Aylin Yaman
- Department of Neurology, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| | - Naciye Füsun Toraman
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| |
Collapse
|
10
|
Chen Z, Liu Y, Lin C, Li Z, Shan J, Duan Z, Rong L, Wei X, Xiao L, Liu H. Aberrant cerebral blood flow and functional connectivity in patients with vestibular migraine: a resting-state ASL and fMRI study. J Headache Pain 2024; 25:84. [PMID: 38773396 PMCID: PMC11107056 DOI: 10.1186/s10194-024-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Prior neuroimaging studies on vestibular migraine (VM) have extensively certified the functional and structural alterations in multiple brain regions and networks. However, few studies have assessed the cerebral blood flow (CBF) in VM patients using arterial spin labeling (ASL). The present study aimed to investigate CBF and functional connectivity (FC) alterations in VM patients during interictal periods. METHODS We evaluated 52 VM patients and 46 healthy controls (HC) who received resting-state pseudo-continuous ASL and functional magnetic resonance imaging (fMRI) scanning. Comparisons of voxel-based CBF and seed-based FC were performed between the two groups. Brain regions showed significant group differences in CBF analyses were chosen as seeds in FC analyses. Additionally, the associations between abnormal imaging results and clinical features were explored. RESULTS Compared with HC, VM patients showed higher normalized CBF in the right precentral gyrus (PreCG), left postcentral gyrus (PostCG), left superior frontal gyrus and bilateral insular (p < 0.05, FDR corrected). Furthermore, VM patients exhibited increased FC between the right PreCG and areas of the left PostCG, left cuneus and right lingual gyrus (p < 0.05, FDR corrected). In addition, we observed decreased FC between the left insular and regions of the left thalamus and right anterior cingulate cortex, as well as increased FC between the left insular and right fusiform gyrus in VM patients (p < 0.05, FDR corrected). Moreover, these variations in brain perfusion and FC were significantly correlated with multiple clinical features including frequency of migraine symptoms, frequency of vestibular symptoms and disease duration of VM (all p < 0.05). CONCLUSIONS Patients with VM during interictal period showed hyperperfusion and abnormal resting-state FC in brain regions potentially contributed to disrupted multi-sensory and autonomic processing, as well as impaired ocular motor control, pain modulation and emotional regulation. Our study provided novel insights into the complex neuropathology of VM from a CBF perspective.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Zhining Li
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Junjun Shan
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Zuowei Duan
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Xiue Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China.
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China.
| |
Collapse
|
11
|
Yeo SS, Kim CJ, Yun SH, Son SM, Kim YJ. Effects of Transcranial Direct Current Stimulation on Clinical Features of Dizziness and Cortical Activation in a Patient with Vestibular Migraine. Brain Sci 2024; 14:187. [PMID: 38391761 PMCID: PMC10887163 DOI: 10.3390/brainsci14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Vestibular migraine (VM) is common migraine that occurs in patients with dizziness. Vestibular rehabilitation for managing VM generally remains unclear. Recently, it has been reported that transcranial direct current stimulation (tDCS) has positive effects in alleviating dizziness. This study investigated the effects of tDCS on dizziness and cortical activation in a patient with VM. METHODS We recruited a male patient aged 31 years with no dizziness. The patient watched a video to induce dizziness using a virtual reality device. The study applied the intervention using tDCS for 4 weeks and measured 4 assessments: functional near-infrared spectroscopy (fNIRS), quantitative electroencephalography (qEEG), dizziness handicap inventory, and visual vertigo analog scale. RESULTS We showed the activation in the middle temporal gyrus and inferior temporal gyrus (ITG) of the left hemisphere and in the superior temporal gyrus and ITG of the right hemisphere in the pre-intervention. After the intervention, the activation of these areas decreased. In the results of qEEG, excessive activation of C3, P3, and T5 in the left hemisphere and C4 in the right hemisphere before intervention disappeared after the intervention. CONCLUSIONS This study indicated that tDCS-based intervention could be considered a viable approach to treating patients with vestibular dysfunction and dizziness caused by VM.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan-si 31116, Republic of Korea
| | - Chang Ju Kim
- Department of Physical Therapy, College of Health Science, Cheongju University, Cheongju-si 28503, Republic of Korea
| | - Seong Ho Yun
- Department of Health, Graduate School, Dankook University, Cheonan-si 31116, Republic of Korea
| | - Sung Min Son
- Department of Physical Therapy, College of Health Science, Cheongju University, Cheongju-si 28503, Republic of Korea
| | - Yoon Jae Kim
- Department of Health, Graduate School, Dankook University, Cheonan-si 31116, Republic of Korea
| |
Collapse
|
12
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
13
|
Harquel S, Cian C, Torlay L, Cousin E, Barraud PA, Bougerol T, Guerraz M. Modulation of Visually Induced Self-motion Illusions by α Transcranial Electric Stimulation over the Superior Parietal Cortex. J Cogn Neurosci 2024; 36:143-154. [PMID: 37870524 DOI: 10.1162/jocn_a_02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The growing popularity of virtual reality systems has led to a renewed interest in understanding the neurophysiological correlates of the illusion of self-motion (vection), a phenomenon that can be both intentionally induced or avoided in such systems, depending on the application. Recent research has highlighted the modulation of α power oscillations over the superior parietal cortex during vection, suggesting the occurrence of inhibitory mechanisms in the sensorimotor and vestibular functional networks to resolve the inherent visuo-vestibular conflict. The present study aims to further explore this relationship and investigate whether neuromodulating these waves could causally affect the quality of vection. In a crossover design, 22 healthy volunteers received high amplitude and focused α-tACS (transcranial alternating current stimulation) over the superior parietal cortex while experiencing visually induced vection triggered by optokinetic stimulation. The tACS was tuned to each participant's individual α peak frequency, with θ-tACS and sham stimulation serving as controls. Overall, participants experienced better quality vection during α-tACS compared with control θ-tACS and sham stimulations, as quantified by the intensity of vection. The observed neuromodulation supports a causal relationship between parietal α oscillations and visually induced self-motion illusions, with their entrainment triggering overinhibition of the conflict within the sensorimotor and vestibular functional networks. These results confirm the potential of noninvasive brain stimulation for modulating visuo-vestibular conflicts, which could help to enhance the sense of presence in virtual reality environments.
Collapse
Affiliation(s)
- Sylvain Harquel
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Corinne Cian
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Laurent Torlay
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| | - Emilie Cousin
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| | - Pierre-Alain Barraud
- Université Grenoble-Alpes, CNRS, CHU Grenoble-Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Thierry Bougerol
- Centre Hospitalier Université Grenoble-Alpes, Pôle Psychiatrie, Grenoble, France
- Université Grenoble-Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
| | - Michel Guerraz
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| |
Collapse
|
14
|
Lin C, Liu D, Liu Y, Chen Z, Wei X, Liu H, Wang K, Liu T, Xiao L, Rong L. Altered functional activity of the precuneus and superior temporal gyrus in patients with residual dizziness caused by benign paroxysmal positional vertigo. Front Neurosci 2023; 17:1221579. [PMID: 37901419 PMCID: PMC10600499 DOI: 10.3389/fnins.2023.1221579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Benign paroxysmal positional vertigo (BPPV) is a common clinical vertigo disease, and the most effective treatment for this disease is canal repositioning procedures (CRP). Most patients return to normal after a single treatment. However, some patients still experience residual dizziness (RD) after treatment, and this disease's pathogenesis is currently unclear. The purpose of this study is to explore whether there are abnormal brain functional activities in patients with RD by using resting-state functional magnetic resonance imaging (rs-fMRI) and to provide imaging evidence for the study of the pathogenesis of RD. Materials and methods The BPPV patients in the Second Affiliated Hospital of Xuzhou Medical University had been included from December 2021 to November 2022. All patients had been received the collection of demographic and clinical characteristics (age, gender, involved semicircular canal, affected side, CRP times, BPPV course, duration of RD symptoms, and whether they had hypertension, diabetes, coronary heart disease.), scale assessment, including Dizziness Handicap Inventory (DHI), Hamilton Anxiety Inventory (HAMA), Hamilton Depression Inventory (HAMD), rs-fMRI data collection, CRP treatment, and then a one-month follow-up. According to the follow-up results, 18 patients with RD were included. At the same time, we selected 19 healthy individuals from our hospital's physical examination center who matched their age, gender as health controls (HC). First, the amplitude of low-frequency fluctuations (ALFF) analysis method was used to compare the local functional activities of the two groups of subjects. Then, the brain regions with different ALFF results were extracted as seed points. Functional connectivity (FC) analysis method based on seed points was used to explore the whole brain FC of patients with RD. Finally, a correlation analysis between clinical features and rs-fMRI data was performed. Results Compared to the HC, patients with RD showed lower ALFF value in the right precuneus and higher ALFF value in the right superior temporal gyrus (STG). When using the right STG as a seed point, it was found that the FC between the right STG, the right supramarginal gyrus (SMG), and the left precuneus was decreased in RD patients. However, no significant abnormalities in the FC were observed when using the right precuneus as a seed point. Conclusion In patients with RD, the local functional activity of the right precuneus is weakened, and the local functional activity of the right STG is enhanced. Furthermore, the FC between the right STG, the right SMG, and the left precuneus is weakened. These changes may explain the symptoms of dizziness, floating sensation, walking instability, neck tightness, and other symptoms in patients with RD to a certain extent.
Collapse
Affiliation(s)
- Cunxin Lin
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yueji Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengwei Chen
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiue Wei
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Wang
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tengfei Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lijie Xiao
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Yagi C, Morita Y, Yamagishi T, Ohshima S, Izumi S, Takahashi K, Watanabe M, Itoh K, Suzuki Y, Igarashi H, Horii A. Changes in functional connectivity among vestibulo-visuo-somatosensory and spatial cognitive cortical areas in persistent postural-perceptual dizziness: resting-state fMRI studies before and after visual stimulation. Front Neurol 2023; 14:1215004. [PMID: 37554393 PMCID: PMC10406134 DOI: 10.3389/fneur.2023.1215004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Persistent postural-perceptual dizziness (PPPD) is a functional chronic vestibular syndrome with symptom exacerbation by upright posture, motion, and complex visual stimuli. Among these exacerbating factors, visual exacerbation is the most specific characteristic of PPPD requiring further investigation. We hypothesized that stimulus-induced changes occur in the functional connectivity (FC) rather than simple neural activation that is involved in visual stimulation. The present study aimed to identify the neural basis of PPPD by investigating FC before and after visual stimulation. METHODS Eleven patients with PPPD and 11 age- and sex-matched healthy controls (HCs) underwent resting-state fMRI (rs-fMRI) before and after task-based fMRI with visual stimuli. RESULTS At pre-stimulus, FC between the vestibular cortex and visual areas was low, while that between the somatosensory and visual areas was high in PPPD compared with that in HCs. FC between the visuospatial (parahippocampal gyrus) and spatial cognitive areas (inferior parietal lobule) was elevated in PPPD even in the pre-stimulus condition, which no longer increased at post-stimulus as observed in HCs. In the post-stimulus condition, FC between the visual and spatial cognitive areas and that between the visual and prefrontal areas increased compared with that in the pre-stimulus condition in PPPD. Task-based fMRI demonstrated that no brain regions showed different activities between the HC and PPPD groups during visual stimulation. DISCUSSION In PPPD, vestibular inputs may not be fully utilized in the vestibulo-visuo-somatosensory network. Given that the FC between visuospatial and spatial cognitive areas increased even in HCs after visual stimuli, elevated status of this FC in combination with the high FC between the somatosensory and visual areas would be involved in the visual exacerbation in PPPD. An increase in FC from the visual areas to spatial cognitive and prefrontal areas after visual stimuli may account for the prolonged symptoms after visual exacerbation and anxious status in PPPD.
Collapse
Affiliation(s)
- Chihiro Yagi
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuka Morita
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Yamagishi
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinsuke Ohshima
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuji Izumi
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kosuke Itoh
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Arata Horii
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Gulraiz S, Ishfaq MF, Rasul TF, Qureshi A. Neuroanatomical Localization of the Vestibular Cortex: A Case Report. Cureus 2023; 15:e41061. [PMID: 37519542 PMCID: PMC10375059 DOI: 10.7759/cureus.41061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Vertigo, a symptom of illusory movement, is caused by asymmetry of the vestibular system. The vestibular system consists of the vestibular labyrinth, cranial nerve VIII, brainstem vestibular nuclei, cerebellum, ocular motor nuclei, spinal cord, and less well-defined cerebral projections. In this day and age of artificial intelligence, machine learning, advanced imaging, and cutting-edge research in the field of neurology, the exact cortical control of vestibular function is still uncharted. A 45-year-old woman with a past medical history of labyrinthitis about 4.5 years ago (resolved) presented to hospital due to severe dizziness, emesis, and mild vertical diplopia for the past few days. Her symptom of dizziness i.e. room spinning was continuous without any postural component. MRI of the brain revealed a small stroke in the left hippocampal area, more specifically alveus of hippocampus. The patient was started on dual antiplatelet therapy and atorvastatin for secondary stroke prevention. Follow-up visit as an outpatient at one-month post hospital discharge was unremarkable without any recurrence of vertigo symptoms. We believe this may indicate that the limbic lobe has a much larger role in vestibular functioning than previously thought, and may control more vestibular operations than any other central nervous system area.
Collapse
Affiliation(s)
- Sana Gulraiz
- School of Public Health, West Virginia University School of Medicine, Morgantown, USA
| | | | - Taha F Rasul
- Infectious Diseases, University of Miami Miller School of Medicine, Miami, USA
| | - Adnan Qureshi
- Neurology, University of Missouri Hospital, Columbia, USA
| |
Collapse
|
17
|
Isakova EV. Stroke and peripheral vestibulopathy as a part of acute vestibular syndrome. ALMANAC OF CLINICAL MEDICINE 2023; 51:14-22. [DOI: 10.18786/2072-0505-2023-51-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The scope of the review is the problem of differential diagnosis between stroke and peripheral vestibulopathy in patients with acute vestibular vertigo. A vertebrobasilar stroke manifesting with the isolated vertigo has been previously recognized to be extremely rare, and the symptoms have been related to the involvement of peripheral parts of the vestibular analyzer. Recently there has been growing evidence that the isolated vertigo syndrome is commonly related to the central involvement of the vestibular analyzer. The author presents published clinical cases of acute cerebrovascular accident with a single symptom of acute vestibular vertigo. It can be also a symptom of a hemispheric stroke due to an injury of vestibular pathways connecting the vestibular nuclei with the parietal cortex. These observations extend the understanding of the common classic pathognomonic picture of central vestibular vertigo, which implies that its development is related exclusively to the brain matter lesion in vestibulobasilar stroke.
Current clinical rating scales and tests (NIHSS, FAST) used for the diagnosis of an acute stroke, are frequently not sensitive to the vertebrobasilar stroke, and neuroimaging, including brain magnetic resonance imaging at DWI mode, may give false negative results. The most informative differential diagnostic method in acute vestibular syndrome is an otoneurological assessment including identification of nystagmus characteristics and head turn impulse test, for the assessment of vestibuloocular reflex and at bed tests (for example, tests included into the HINTS PLUS protocol). In this regard, it is important that neurology specialists in regional vascular centers and departments for acute cerebrovascular care should master the otoneurological assessment skills.
Collapse
|
18
|
Kearney BE, Terpou BA, Densmore M, Shaw SB, Théberge J, Jetly R, McKinnon MC, Lanius RA. How the body remembers: Examining the default mode and sensorimotor networks during moral injury autobiographical memory retrieval in PTSD. Neuroimage Clin 2023; 38:103426. [PMID: 37207593 PMCID: PMC10206209 DOI: 10.1016/j.nicl.2023.103426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Neural representations of sensory percepts and motor responses constitute key elements of autobiographical memory. However, these representations may remain as unintegrated sensory and motor fragments in traumatic memory, thus contributing toward re-experiencing and reliving symptoms in trauma-related conditions such as post-traumatic stress disorder (PTSD). Here, we investigated the sensorimotor network (SMN) and posterior default mode network (pDMN) using a group independent component analysis (ICA) by examining their functional connectivity during a script-driven memory retrieval paradigm of (potentially) morally injurious events in individuals with PTSD and healthy controls. Moral injury (MI), where an individual acts or fails to act in a morally aligned manner, is examined given its inherent ties to disrupted motor planning and thus sensorimotor mechanisms. Our findings revealed significant differences in functional network connectivity across the SMN and pDMN during MI retrieval in participants with PTSD (n = 65) as compared to healthy controls (n = 25). No such significant group-wise differences emerged during retrieval of a neutral memory. PTSD-related alterations included hyperconnectivity between the SMN and pDMN, enhanced within-network connectivity of the SMN with premotor areas, and increased recruitment of the supramarginal gyrus into both the SMN and the pDMN during MI retrieval. In parallel with these neuroimaging findings, a positive correlation was found between PTSD severity and subjective re-experiencing intensity ratings after MI retrieval. These results suggest a neural basis for traumatic re-experiencing, where reliving and/or re-enacting a past morally injurious event in the form of sensory and motor fragments occurs in place of retrieving a complete, past-contextualized narrative as put forth by Brewin and colleagues (1996) and Conway and Pleydell-Pearce (2000). These findings have implications for bottom-up treatments targeting directly the sensory and motoric elements of traumatic experiences.
Collapse
Affiliation(s)
- Breanne E Kearney
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - Braeden A Terpou
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh B Shaw
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Rakesh Jetly
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada
| | - Ruth A Lanius
- Department of Neuroscience, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada.
| |
Collapse
|
19
|
Leisman G, Melillo R, Melillo T. Prefrontal Functional Connectivities in Autism Spectrum Disorders: A Connectopathic Disorder Affecting Movement, Interoception, and Cognition. Brain Res Bull 2023; 198:65-76. [PMID: 37087061 DOI: 10.1016/j.brainresbull.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The prefrontal cortex is included in a neuronal system that includes the basal ganglia, the thalamus, and the cerebellum. Most of the higher and more complex motor, cognitive, and emotional behavioral functions are thought to be found primarily in the frontal lobes. Insufficient connectivity between the medial prefrontal cortex (mPFC) and other regions of the brain that are distant from each other involved in top-down information processing rely on the global integration of data from multiple input sources and enhance low level perception processes (bottom-up information processing). The reduced deactivation in mPFC and in the rest of the Default Network during global task processing is consistent with the integrative modulatory role served by the mPFC. We stress the importance of understanding the degree to which sensory and movement anomalies in individuals with autism spectrum disorder (ASD) can contribute to social impairment. Further investigation on the neurobiological basis of sensory symptoms and its relationship to other clinical features found in ASD is required Treatment perhaps should not be first behaviorally based but rather based on facilitating sensory motor development.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel; University of the Medical Sciences of Havana, Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Ty Melillo
- Northeast College of the Health Sciencs, Seneca Falls, NY USA
| |
Collapse
|
20
|
Park JY, Choi JH, Kwon JH, Weon YC, Lee SM, Kim HJ, Choi SY, Oh EH, Kim HA, Lee H, Kim JS, Choi KD. Incidence, characteristics, and neuroanatomical substrates of vestibular symptoms in supratentorial stroke. J Neurol 2023; 270:2174-2183. [PMID: 36633670 DOI: 10.1007/s00415-023-11566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The incidence and characteristics of acute vestibular symptoms, responsible structures, and lateralization of the causative lesions in supratentorial stroke remain unknown. This study aimed to determine the incidence, clinical features, and anatomical correlation of acute vestibular symptoms in supratentorial stroke. We performed a prospective, multicenter, observational study that had recruited patients with supratentorial stroke from the neurology clinics of referral-based four university hospitals in Korea. All patients received a constructed neuro-otological evaluations, and neuroimaging. We analyzed the incidence of acute vestibular symptoms, abnormal ocular motor and vestibular function tests, and stroke lesions. Of 1301 patients with supratentorial stroke, 48 (3.7%) presented with acute vestibular symptoms, and 13 of them (1%) had the vestibular symptoms in isolation. In patients with acute vestibular symptoms, abnormal findings included spontaneous nystagmus (5%), impaired horizontal smooth pursuit (41%), and abnormal tilt of the subjective visual vertical (SVV) (20%). Video head impulse and caloric tests were normal in all the patients. There was no clear correlation between acute vestibular symptoms and involvement of specific vestibular cortex. In patients with unilateral stroke, there was also no lateralization of the causative lesions of acute vestibular symptoms (left vs. right; 52 vs. 48%), even in patients with vertigo (left vs. right; 58 vs. 42%). This study demonstrates that the incidence of acute vestibular symptoms in supratentorial stroke is 3.7%, with being isolated in 1%. The widespread lesions responsible for acute vestibular symptoms implicate diffuse multisensory cortical-subcortical networks in the cerebral hemispheres without a lateralization.
Collapse
Affiliation(s)
- Ji-Yun Park
- Department of Neurology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jee-Hyun Kwon
- Department of Neurology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Young Cheol Weon
- Department of Radiology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Suk-Min Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, College of Medicine, 179, Gudeok-Ro, Seo-Gu, Busan, 602-739, Korea
| | - Hyo Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seo Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, College of Medicine, 179, Gudeok-Ro, Seo-Gu, Busan, 602-739, Korea
| | - Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Ah Kim
- Department of Neurology, Keimyung University School of Medicine, 1095, Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| | - Hyung Lee
- Department of Neurology, Keimyung University School of Medicine, 1095, Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, College of Medicine, 179, Gudeok-Ro, Seo-Gu, Busan, 602-739, Korea.
| |
Collapse
|
21
|
Chen G, Liu S, Wu H, Gan J, Wang X, Ji Y. Analysis of clinical characteristics of mirror and TV signs in Alzheimer's disease and dementia with Lewy bodies. J Int Med Res 2023; 51:3000605231156098. [PMID: 36794570 PMCID: PMC9936532 DOI: 10.1177/03000605231156098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE This study explored the clinical features of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) and analyzed the differences in neurologic syndromes, including mirror and TV signs, between different groups. METHODS Patients with AD and DLB (325 and 115, respectively) hospitalized in our institution were enrolled. We compared psychiatric symptoms and neurologic syndromes between the DLB and AD groups and within each subgroup, including the mild-moderate and severe subgroups. RESULTS The prevalence rates of visual hallucination, parkinsonism, rapid eye movement sleep behavior disorder, depression, delusion, and the Pisa sign were significantly higher in the DLB group than in the AD group. Furthermore, within the mild-moderate subgroup, the mirror sign and Pisa sign prevalence rates were significantly higher in the DLB group than in the AD group. In the severe subgroup, no significant difference was found in any neurologic sign between the DLB and AD groups. CONCLUSION Mirror and TV signs are rare and often disregarded because they are not usually invoked during routine inpatient or outpatient interviews. According to our findings, the mirror sign is uncommon in early AD patients but common in early DLB patients and should receive increased attention.
Collapse
Affiliation(s)
- Gang Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin Dementia Institute, Tianjin, China,Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin Dementia Institute, Tianjin, China
| | - Hao Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin Dementia Institute, Tianjin, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaodan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin Dementia Institute, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin Dementia Institute, Tianjin, China,Yong Ji, Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
22
|
Becker-Bense S, Kaiser L, Becker R, Feil K, Muth C, Albert NL, Unterrainer M, Bartenstein P, Strupp M, Dieterich M. Acetyl-DL-leucine in cerebellar ataxia ([ 18F]-FDG-PET study): how does a cerebellar disorder influence cortical sensorimotor networks? J Neurol 2023; 270:44-56. [PMID: 35876876 PMCID: PMC9813104 DOI: 10.1007/s00415-022-11252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of the study was to deepen our insights into central compensatory processes of brain networks in patients with cerebellar ataxia (CA) before and with treatment with acetyl-DL-leucine (AL) by means of resting-state [18F]-FDG-PET brain imaging. METHODS Retrospective analyses of [18F]-FDG-PET data in 22 patients with CA (with vestibular and ocular motor disturbances) of different etiologies who were scanned before (PET A) and on AL treatment (PET B). Group subtraction analyses, e.g., for responders and non-responders, comparisons with healthy controls and correlation analyses of regional cerebral glucose metabolism (rCGM) with symptom duration, ataxia (SARA) and quality of life (QoL) scores were calculated. RESULTS Prior to treatment rCGM was consistently downregulated at the cerebellar level and increased in multisensory cortical areas, e.g., somatosensory, primary and secondary visual (including V5, precuneus), secondary vestibular (temporal gyrus, anterior insula), and premotor/supplementary motor areas. With AL (PET B vs. A) cerebellar hypometabolism was deepened and sensorimotor hypermetabolism increased only in responders with clinical benefit, but not for the non-responders and the whole CA group. A positive correlation of ataxia improvement with rCGM was found in visual and vestibular cortices, a negative correlation in cerebellar and brainstem areas. QoL showed a positive correlation with rCGM in the cerebellum and symptom duration in premotor and somatosensory areas. CONCLUSIONS Central compensatory processes in CA mainly involve multisensory visual, vestibular, and somatosensory networks as well as premotor/primary motor areas at the cortical level. The enhanced divergence of cortical sensorimotor up- and cerebellar downregulation with AL in responders could reflect amplification of inhibitory cerebellar mechanisms.
Collapse
Affiliation(s)
- Sandra Becker-Bense
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Regina Becker
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Feil
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Muth
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Strupp
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Martinez-Gutierrez E, Jimenez-Marin A, Stramaglia S, Cortes JM. The structure of anticorrelated networks in the human brain. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:946380. [PMID: 36926060 PMCID: PMC10012996 DOI: 10.3389/fnetp.2022.946380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/24/2022] [Indexed: 06/18/2023]
Abstract
During the performance of a specific task--or at rest--, the activity of different brain regions shares statistical dependencies that reflect functional connections. While these relationships have been studied intensely for positively correlated networks, considerably less attention has been paid to negatively correlated networks, a. k.a. anticorrelated networks (ACNs). Although the most celebrated of all ACNs is the default mode network (DMN), and has even been extensively studied in health and disease, for systematically all ACNs other than DMN, there is no comprehensive study yet. Here, we have addressed this issue by making use of three neuroimaging data sets: one of N = 192 healthy young adults to fully describe ACN, another of N = 40 subjects to compare ACN between two groups of young and old participants, and another of N = 1,000 subjects from the Human Connectome Project to evaluate the association between ACN and cognitive scores. We first provide a comprehensive description of the anatomical composition of all ACNs, each of which participated in distinct resting-state networks (RSNs). In terms of participation ranking, from highest to the lowest, the major anticorrelated brain areas are the precuneus, the anterior supramarginal gyrus and the central opercular cortex. Next, by evaluating a more detailed structure of ACN, we show it is possible to find significant differences in ACN between specific conditions, in particular, by comparing groups of young and old participants. Our main finding is that of increased anticorrelation for cerebellar interactions in older subjects. Finally, in the voxel-level association study with cognitive scores, we show that ACN has multiple clusters of significance, clusters that are different from those obtained from positive correlated networks, indicating a functional cognitive meaning of ACN. Overall, our results give special relevance to ACN and suggest their use to disentangle unknown alterations in certain conditions, as could occur in early-onset neurodegenerative diseases or in some psychiatric conditions.
Collapse
Affiliation(s)
- Endika Martinez-Gutierrez
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Dipartamento Interateneo di Fisica, Universita Degli Studi di Bari Aldo Moro, INFN, Bari, Italy
| | - Antonio Jimenez-Marin
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country, Leioa, Spain
| | - Sebastiano Stramaglia
- Dipartamento Interateneo di Fisica, Universita Degli Studi di Bari Aldo Moro, INFN, Bari, Italy
| | - Jesus M. Cortes
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
24
|
Cerebrocortical activation following unilateral labyrinthectomy in mice characterized by whole-brain clearing: implications for sensory reweighting. Sci Rep 2022; 12:15424. [PMID: 36104440 PMCID: PMC9474865 DOI: 10.1038/s41598-022-19678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Posture and gait are maintained by sensory inputs from the vestibular, visual, and somatosensory systems and motor outputs. Upon vestibular damage, the visual and/or somatosensory systems functionally substitute by cortical mechanisms called “sensory reweighting”. We investigated the cerebrocortical mechanisms underlying sensory reweighting after unilateral labyrinthectomy (UL) in mice. Arc-dVenus transgenic mice, in which the gene encoding the fluorescent protein dVenus is transcribed under the control of the promoter of the immediate early gene Arc, were used in combination with whole-brain three-dimensional (3D) imaging. Performance on the rotarod was measured as a behavioral correlate of sensory reweighting. Following left UL, all mice showed the head roll-tilt until UL10, indicating the vestibular periphery damage. The rotarod performance worsened in the UL mice from UL1 to UL3, which rapidly recovered. Whole-brain 3D imaging revealed that the number of activated neurons in S1, but not in V1, in UL7 was higher than that in sham-treated mice. At UL7, medial prefrontal cortex (mPFC) and agranular insular cortex (AIC) activation was also observed. Therefore, sensory reweighting to the somatosensory system could compensate for vestibular dysfunction following UL; further, mPFC and AIC contribute to the integration of sensory and motor functions to restore balance.
Collapse
|
25
|
Patel K, Beaver D, Gruber N, Printezis G, Giannopulu I. Mental imagery of whole-body motion along the sagittal-anteroposterior axis. Sci Rep 2022; 12:14345. [PMID: 35999355 PMCID: PMC9399091 DOI: 10.1038/s41598-022-18323-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Whole-body motor imagery is conceptualised as a mental symbolisation directly and indirectly associated with neural oscillations similar to whole-body motor execution. Motor and somatosensory activity, including vestibular activity, is a typical corticocortical substrate of body motion. Yet, it is not clear how this neural substrate is organised when participants are instructed to imagine moving their body forward or backward along the sagittal-anteroposterior axis. It is the aim of the current study to identify the fingerprint of the neural substrate by recording the cortical activity of 39 participants via a 32 electroencephalography (EEG) device. The participants were instructed to imagine moving their body forward or backward from a first-person perspective. Principal Component Analysis (i.e. PCA) applied to the neural activity of whole-body motor imagery revealed neural interconnections mirroring between forward and backward conditions: beta pre-motor and motor oscillations in the left and right hemisphere overshadowed beta parietal oscillations in forward condition, and beta parietal oscillations in the left and right hemisphere overshadowed beta pre-motor and motor oscillations in backward condition. Although functional significance needs to be discerned, beta pre-motor, motor and somatosensory oscillations might represent specific settings within the corticocortical network and provide meaningful information regarding the neural dynamics of continuous whole-body motion. It was concluded that the evoked multimodal fronto-parietal neural activity would correspond to the neural activity that could be expected if the participants were physically enacting movement of the whole-body in sagittal-anteroposterior plane as they would in their everyday environment.
Collapse
Affiliation(s)
- K Patel
- School of Human Sciences and Humanities, University of Houston, Houston, 77001, USA
| | - D Beaver
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, 4226, Australia
| | - N Gruber
- Department of Mathematics, University of Innsbruck, 6020, Innsbruck, Austria
- VASCage, 6020, Innsbruck, Austria
| | - G Printezis
- Department of Electrical Engineering, Technological University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - I Giannopulu
- Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
- Clinical Research and Technological Innovation, 75016, Paris, France.
| |
Collapse
|
26
|
Wu X, Jiang Z, Zheng J, Jiao Z, Liu T, Dou W, Shi H. Intravoxel incoherent motion to assess brain microstructure and perfusion in patients with end-stage renal disease. J Neuroimaging 2022; 32:930-940. [PMID: 35817591 DOI: 10.1111/jon.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the clinical value of intravoxel incoherent motion (IVIM) diffusion-weighted imaging in evaluating the brain microstructure and perfusion changes in end-stage renal disease (ESRD) patients. METHODS The routine head MRI sequences and IVIM were performed on 40 ESRD patients and 30 healthy subjects. The IVIM was executed with 10 b-values varying from 0 to 1000 seconds/mm2 . All subjects were evaluated on neuropsychological test. Laboratory tests were conducted for ESRD patients. RESULTS Compared with the control group, increased slow apparent diffusion coefficient values (ADCslow ) were found in the left frontal lobe, hippocampus, bilateral temporal lobe, and the right occipital lobe (p < .05), and increased fast ADC values (ADCfast ) were found in all regions of interest (all p < .001) in ESRD patients. In ESRD patients, ADCfast in right frontal lobe (p = .041) and insular lobe (p = .045) was negatively correlated with the Montreal Cognitive Assessment score (MoCA), and ADCfast in the right parietal lobe (p = .009) and hippocampus (p = .041) had positive correlation with hemoglobin levels. Using receiver operating characteristics (ROC) analysis, ADCfast in the right frontal lobe, insular lobe, hippocampus, and parietal lobe separately showed fair to good efficacy in differentiating ESRD patients from healthy subjects, with the area under the ROC ranging from .853 to .903. CONCLUSIONS The microstructure and perfusion of the brain were impaired in ESRD patients. ADCfast of the right frontal lobe, insular lobe, hippocampus, and parietal lobe could be effective biomarker for evaluating cognitive impairment in ESRD patients.
Collapse
Affiliation(s)
- Xiangxiang Wu
- Graduate College, Dalian Medical University, Dalian, China.,Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Zijian Jiang
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jiahui Zheng
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China.,Graduate College, Nanjing Medical University, Nanjing, China
| | - Zhuqing Jiao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Tongqiang Liu
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Weiqiang Dou
- Department of MR Research, GE Healthcare China, Beijing, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| |
Collapse
|
27
|
Fu W, Bai Y, He F, Wei D, Wang Y, Shi Y, An X, Han J, Wang X. The Association Between Precuneus Function and Residual Dizziness in Patients With Benign Paroxysmal Positional Vertigo. Front Neurol 2022; 13:828642. [PMID: 35493847 PMCID: PMC9039311 DOI: 10.3389/fneur.2022.828642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives The purpose of this study was to apply the amplitude of the low-frequency fluctuation (ALFF) method to investigate the spontaneous brain activity alterations in patients with residual dizziness (RD) after successful canalith repositioning manoeuvre for benign paroxysmal positional vertigo (BPPV). Methods All BPPV patients underwent visual vertigo analog scale (VVAS) evaluations and functional magnetic resonance imaging (fMRI). The ALFF method was used to assess the spontaneous brain activity. Screening of brain regions with significant changes in ALFF values was based on analysis of the whole brain. We further analyze the relationship between ALFF values of the altered regions and VVAS scores in BPPV patients with RD. Results Fifteen BPPV patients with RD and fifteen without RD were recruited in this study. In contrast to without RD, RD patients exhibited increased scores in VVAS tests (p < 0.001) and RD patients also showed significant ALFF decrease in the bilateral precuneus (left: 251 voxels; x = −10, y = −69, z = 51; peak t-value = −3.25; right: 170 voxels; x = 4, y = −59, z = 42; peak t-value = −3.43). Correlation analysis revealed that the mean ALFF z-values in the left precuneus displayed significant negative correlations with the VVAS scores(r = −0.44, p = 0.01). Conclusions This study shows that RD is associated with left precuneus function as revealed by fMRI. It might provide useful information for explaining neural mechanisms in BPPV patients with RD.
Collapse
Affiliation(s)
- Wei Fu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ya Bai
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng He
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyue An
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junliang Han
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- *Correspondence: Junliang Han
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Xiaoming Wang
| |
Collapse
|
28
|
Zhang Q, Zhang L, He W, Zheng X, Zhao Z, Li Y, Xu S, Zheng J, Zhuang X, Jia W, Zhu C, Xu H, Shan C, Chen W, Zhao J, Chen S. Case Report: Visual Deprivation in Pusher Syndrome Complicated by Hemispatial Neglect After Basal Ganglia Stroke. Front Neurol 2021; 12:706611. [PMID: 34630282 PMCID: PMC8494178 DOI: 10.3389/fneur.2021.706611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
We aimed to explore whether motor function and activities of daily life (ADL) could be improved with the application of visual deprivation in two patients with Pusher syndrome complicated by hemispatial neglect after right basal ganglia stroke. We assessed two stroke patients suffering from severe motor disturbances, both tilting heavily to the left, with diagnoses of Pusher syndrome and left hemispatial neglect. Vision in the left eye was deprived using patches during clinical rehabilitation. Motor function promotion was confirmed using the Burke Lateropulsion Scale (BLS), Fugl–Meyer Balance Scale (FMBS), and Holden grade (HG), while the Barthel index (BI) assessed ADL immediately and 1 week after intervention. Both patients regained standing balance immediately using visual deprivation, as well as walking ability, although both scored 0 on the FMBS and HG. After 1 week of treatment, one patient increased to 11 and 3 on the FMBS and HG, respectively, while the BLS score decreased from 12 to 2, and the ADL increased from 23 to 70. The other patient demonstrated increases to 10 and 3 on the FMBS and HG, respectively, with the BLS decreasing from 13 to 3, and the ADL increasing from 25 to 60. Therefore, in the rehabilitation treatment of Pusher syndrome complicated by hemispatial neglect due to basal ganglia stroke, visual deprivation can significantly improve motor function and shorten the treatment course.
Collapse
Affiliation(s)
- Qian Zhang
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lixia Zhang
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei He
- Rehabilitation Department, Rehabilitation Hospital Affiliated to Nanjing Institute of Physical Education, Wuxi, China
| | - Xuemei Zheng
- Rehabilitation Department, Xinjiang Korla Bazhou People's Hospital, Korla, China
| | - Zhengrui Zhao
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuanli Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Shutian Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Juan Zheng
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xin Zhuang
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wenting Jia
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chengyuan Zhu
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hua Xu
- Rehabilitation Department, The Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.,Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Wenhua Chen
- Rehabilitation Department, The First People's Hospital Affiliated With Shanghai Jiao Tong University, Shanghai, China
| | - Jingpu Zhao
- Rehabilitation Department, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Sijing Chen
- Rehabilitation Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Cedras AM, Sharp A, Bacon BA, Champoux F, Maheu M. Asymmetrical influence of bi-thermal caloric vestibular stimulation on a temporal order judgment task. Exp Brain Res 2021; 239:3133-3141. [PMID: 34417828 DOI: 10.1007/s00221-021-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Recent evidences suggest that binaural vestibular stimulation affects tactile temporal processing. However, it remains difficult to determine the physiological mechanisms supporting the vestibular-somatosensory interactions observed during a TOJ task. Controlling the activation of the right or left vestibular system separately could allow to better understand the physiological bases of these findings and reconcile previous studies. The objective of the present study was to examine tactile temporal processing using a temporal order judgment task following selective stimulation of the right and left vestibular system with bi-thermal caloric vestibular stimulation (CVS). A total of 24 right-handed participants received bi-thermal CVS either in the right ear (n = 12) or the left ear (n = 12). Participants held vibrators in both hands which delivered a signal temporally separated by a variable asynchrony. Participants had to report the hand where the vibration was perceived first. The task was performed in three different CVS conditions: (1) baseline, (2) warm CVS, and (3) cold CVS. Analysis of the logistics curve parameters-just noticeable difference (JND) and point of subjective simultaneity (PSS)-for each participant in each CVS conditions revealed an increase in JND greater following warm CVS. A significant increase in JND following warm CVS was measured bilaterally. However, cold CVS increased JND only when CVS was applied in the left ear, but not in the right ear. Finally, no influence of CVS on PSS was observed.
Collapse
Affiliation(s)
- Assan Mary Cedras
- Faculty of Medicine, School of Speech Language Pathology and Audiology, Montreal University, Succursale Centre-Ville, 7077 Avenue du Parc, Bureau 3001-42, C.P. 6128, Montreal, QC, H3C 3J7, Canada.,Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-L'Île-de-Montréal, Montreal, Canada
| | - Andréanne Sharp
- Département de Réadaptation, Faculté de Médecine, Université Laval, Québec, Canada et Centre de Recherche CERVO, Québec, Canada
| | | | - François Champoux
- Faculty of Medicine, School of Speech Language Pathology and Audiology, Montreal University, Succursale Centre-Ville, 7077 Avenue du Parc, Bureau 3001-42, C.P. 6128, Montreal, QC, H3C 3J7, Canada
| | - Maxime Maheu
- Faculty of Medicine, School of Speech Language Pathology and Audiology, Montreal University, Succursale Centre-Ville, 7077 Avenue du Parc, Bureau 3001-42, C.P. 6128, Montreal, QC, H3C 3J7, Canada. .,Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-L'Île-de-Montréal, Montreal, Canada.
| |
Collapse
|
30
|
Salatino A, Iacono C, Gammeri R, Chiadò ST, Lambert J, Sulcova D, Mouraux A, George MS, Roberts DR, Berti A, Ricci R. Zero gravity induced by parabolic flight enhances automatic capture and weakens voluntary maintenance of visuospatial attention. NPJ Microgravity 2021; 7:29. [PMID: 34315902 PMCID: PMC8316350 DOI: 10.1038/s41526-021-00159-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
Orienting attention in the space around us is a fundamental prerequisite for willed actions. On Earth, at 1 g, orienting attention requires the integration of vestibular signals and vision, although the specific vestibular contribution to voluntary and automatic components of visuospatial attention remains largely unknown. Here, we show that unweighting of the otolith organ in zero gravity during parabolic flight, selectively enhances stimulus-driven capture of automatic visuospatial attention, while weakening voluntary maintenance of covert attention. These findings, besides advancing our comprehension of the basic influence of the vestibular function on voluntary and automatic components of visuospatial attention, may have operational implications for the identification of effective countermeasures to be applied in forthcoming human deep space exploration and habitation, and on Earth, for patients’ rehabilitation.
Collapse
Affiliation(s)
- Adriana Salatino
- Department of Psychology, University of Turin, Turin, Italy. .,Institute of Neuroscience (IoN), Université Catholique de Louvain Brussels, Brussels, Belgium.
| | - Claudio Iacono
- Department of Psychology, University of Turin, Turin, Italy
| | | | | | - Julien Lambert
- Institute of Neuroscience (IoN), Université Catholique de Louvain Brussels, Brussels, Belgium
| | - Dominika Sulcova
- Institute of Neuroscience (IoN), Université Catholique de Louvain Brussels, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience (IoN), Université Catholique de Louvain Brussels, Brussels, Belgium
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Donna R Roberts
- Department of of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Berti
- Department of Psychology, University of Turin, Turin, Italy
| | - Raffaella Ricci
- Department of Psychology, University of Turin, Turin, Italy. .,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
31
|
Abstract
There is a reciprocal relationship between vestibular and neuropsychological disorders. People with vertigo and dizziness are at higher risk of various psychiatric disorders, particularly anxiety, depression, and panic disorder. On the other hand, people with mood disorders are at higher risk of experiencing vertigo and dizziness. Vestibular information plays a crucial role in cognitive processes, especially visuo-spatial abilities. Consequently, vestibular disorders (both peripheral and central) often result in visuo-spatial deficits. In addition, lesions of the cortical and subcortical components of the vestibular system result in disorders of higher vestibular function, such as hemispatial neglect, pusher syndrome, and topographagnosia.
Collapse
Affiliation(s)
- Shin C Beh
- Department of Neurology, Vestibular & Neuro-Visual Disorders Clinic, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Zhe X, Zhang X, Chen L, Zhang L, Tang M, Zhang D, Li L, Lei X, Jin C. Altered Gray Matter Volume and Functional Connectivity in Patients With Vestibular Migraine. Front Neurosci 2021; 15:683802. [PMID: 34305518 PMCID: PMC8297163 DOI: 10.3389/fnins.2021.683802] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023] Open
Abstract
Subjects Vestibular migraine (VM) is the most common neurological cause of vertigo in adults. Previous neuroimaging studies have reported structural alterations in areas associated with pain and vestibular processing. However, it is unclear whether altered resting-state functional connectivity (FC) exists in brain regions with structural abnormalities in patients with VM. Methods Resting-state functional magnetic resonance imaging (MRI) and three-dimensional T1-weighed MRI were performed in 30 patients with VM and 30 healthy controls (HCs). Patients underwent an evaluation of migraine and dizziness severity. FC and voxel-based morphometry (VBM) were performed using DPABI 4.3 and CAT12, respectively. The association between changes in gray matter (GM) volume or FC and clinical parameters was also analyzed. Results Compared with HCs, patients with VM demonstrated a reduced GM volume in the bilateral parietoinsular vestibular cortex (PIVC), right middle frontal gyrus, and precuneus. The GM volume of the left PIVC was negatively associated with Dizziness Handicap Inventory score in patients with VM. Taking this region as a seed region, we further observed increased FC between the left primary somatosensory cortex (S1)/inferior parietal lobule (IPL) and the left PIVC in patients with VM. Conclusion FC between regions with a decline in GM volume (the PIVC and S1/IPL) is altered in patients with VM, suggesting that abnormalities in vestibular cortical network could be useful for understanding the underlying mechanisms of VM.
Collapse
Affiliation(s)
- Xia Zhe
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Longchao Li
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chenwang Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Feng N, Gao M, Wu J, Yang G, Piao R, Liu P. Higher inter-hemispheric homotopic connectivity in lifelong premature ejaculation patients: a pilot resting-state fMRI study. Quant Imaging Med Surg 2021; 11:3234-3243. [PMID: 34249649 DOI: 10.21037/qims-20-1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
Background Lifelong premature ejaculation (PE) is one common male sexual dysfunction and is implicated in widespread structural and functional abnormalities of bilateral hemispheres. However, whether the inter-hemisphere functional connectivity (FC) of lifelong PE patients was altered still remain unclear. Methods Thirty-four lifelong PE patients and 30 healthy controls (HCs) were enrolled in this study and all underwent T1-weighted and resting-state functional MRI (fMRI) scan. The voxel-mirrored homotopic connectivity (VMHC) measure and independent sample t-test were applied to examine the alterations of VMHC values in the patients relative to HCs with the significant threshold at P<0.05, false discovery rates corrected. Correlation analysis was adopted to calculate the relationships between the imaging results and clinical characteristics of patients (P<0.05, Bonferroni corrected). Receiver operating characteristic (ROC) curve analysis was performed to investigate the possible biomarkers for distinguishing the patients from the HCs using the VMHC values of inter-group differences. Results The results revealed that compared with HCs, lifelong PE patients had higher VMHC values in the precentral gyrus (PG), primary somatosensory cortex (S1), supplementary motor area (SMA), precuneus, middle temporal cortex (MTC), superior temporal pole (STP), thalamus, caudate and middle cingulate cortex (MCC). Correlation analysis showed that the mean VMHC values in the S1 negatively correlated with intravaginal ejaculation latency time (IELT) in the patient group. Furthermore, the caudate revealed the well classification power from the ROC analysis. Conclusions The present study showed the abnormal inter-hemisphere interaction and integration of information involved in ejaculation inhibitory control, sensorimotor mediation and self-reference processing including the thalamus, caudate, MCC, widespread parietal cortex and temporal cortex in lifelong PE patients compared with HCs. Correlation analysis and ROC analysis revealed the importance of S1 and caudate in lifelong PE. Notably, the ROC result of caudate might show the core roles of caudate played in the pathophysiology of lifelong PE.
Collapse
Affiliation(s)
- Nana Feng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Gao
- Xi'an Daxing Hospital of Shaanxi University of Chinese Medicine, Xi'an, China.,Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Guang Yang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ruiqing Piao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
34
|
Tonomura T, Satow T, Hyuga Y, Mima T. Use of transcranial direct current stimulation in poststroke postural imbalance. BMJ Case Rep 2021; 14:14/6/e243212. [PMID: 34158332 DOI: 10.1136/bcr-2021-243212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Independent gait following stroke is ultimate goal of rehabilitation. Non-invasive neuromodulation achieving it has never been reported. A 74-year-old woman suffered from subarachnoid haemorrhage, followed by hydrocephalus. Both were treated successfully. Even 1 year after the ictus, ambulation was difficult due to truncal instability with lateropulsion mainly to the left side. Transcranial direct current stimulation (tDCS) was applied to the parietal area (2mA for 20 min/day; anode on left side, cathode on right) for 16 days. The intervention improved her truncal instability and she achieved independent gait. tDCS of the parietal area could be a novel treatment option for gait disturbance due to postural instability following stroke.
Collapse
Affiliation(s)
- Tadayasu Tonomura
- Department of Rehabilitation Medicine, Shiritsu Nagahama Byoin, Nahagama city, Shiga, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Shiritsu Nagahama Byoin, Nagahama, Shiga, Japan
| | - Yuko Hyuga
- Department of Rehabilitation Medicine, Shiritsu Nagahama Byoin, Nahagama city, Shiga, Japan
| | - Tatsuya Mima
- Ritsumeikan University Graduate School of Core Ethics and Frontier Sciences, Kyoto, Japan
| |
Collapse
|
35
|
Neuroimaging studies in persistent postural-perceptual dizziness and related disease: a systematic review. J Neurol 2021; 269:1225-1235. [PMID: 34019178 DOI: 10.1007/s00415-021-10558-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Persistent Postural-Perceptual Dizziness (PPPD) is one of the most common types of chronic dizziness. The pathogenesis remains unclear. OBJECTIVE This study aimed to systematically review neuroimaging literature for investigating the central mechanism of PPPD and related disorders. METHODS PubMed, EMBASE, Medline, Cochrane, and Web of Science were searched by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The articles analyzing structural and functional neuroimaging features of PPPD and related disorders were selected according to eligibility criteria. RESULTS Fifteen articles, including 4 structural, 10 functional, and 1 multimodal imaging, were eligible for inclusion in this review. The whiter matter alterations in PPPD are not entirely consistent. The changes of grey matter mainly in multisensory vestibular cortices, visual cortex, cerebellum, as well as anxiety-related network. Consistent with structural imaging, functional imaging conducted during the specific tasks or in the resting state has both found abnormal functional activation and connectivity in the vestibular cortex, especially in the parieto-insular vestibular cortex (PIVC), visual cortex, cerebellum, and anxiety-related network in PPPD and related disorder. CONCLUSIONS The current review provides up-to-date knowledge and summarizes the possible central mechanism for PPPD and related disorders, and it is helpful to understanding the mechanism of PPPD.
Collapse
|
36
|
Abstract
The aim of the present study was to evaluate the severity of vestibular drop attack (VDA) in Ménière's disease (MD) and to examine the association between VDA severity and other MD-related complaints. The study used a cross-sectional survey design using an electronic questionnaire. The mean age of participants was 56.7 years, and the mean duration of MD was 12.4 years. Four categories of VDA were identified based on level of severity. VDA occurred in 305 (50.7%) of the 602 patients. Of these, 133 patients (22%) experienced mild VDA (i.e., associated with tripping); 80 (13%) experienced moderate VDA (i.e., associated with fall threat unless they had been able to grab support); and 92 (15%) experienced severe VDA (i.e., patients fell to the ground, as in a classical Tumarkin attack). In 70%of participants, VDA occurred less than once a week. VDA lasted for only a few seconds in 90%of participants. 87%reported single attacks, whereas 13%experienced VDA in clusters. VDA was associated with visual auras, reduced quality of life, poor postural control, and fatigue. Approximately half of MD patients experience VDA with varying degrees of severity. If VDA causes falls or near-falls, the attacks should be appropriately treated.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, Hearing and Balance Research Unit, University of Tampere, Finland
| | - Nora Pyykkö
- Faculty of Medicine, University of Tartu, Tartu, Estonia.,Finnish Ménière Federation, Helsinki, Finland
| | - Vinaya Manchaiah
- Department of Speech and Hearing Sciences, Lamar University, Beaumont, Texas, USA.,Department of Speech and Hearing, School of Allied Health Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
37
|
Jiang Y, Zhou X. Frontal lobe epilepsy manifesting as vertigo: a case report and literature review. J Int Med Res 2020; 48:300060520946166. [PMID: 32877235 PMCID: PMC7502690 DOI: 10.1177/0300060520946166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Frontal lobe epilepsy is a common neurological disorder with a broad spectrum of symptoms. Frontal lobe epilepsy presenting with vertigo is extremely rare, and the relevant pathogenesis remains unclear. Herein, we report a case of frontal lobe epilepsy manifesting as vertigo, and we review the relevant literature. A 34-year-old woman presented with a 10-year history of general tonic-clonic seizures. In the month prior to admission, she experienced nocturnal seizures on two occasions. Video electroencephalogram monitoring showed frequent clinical seizures during which the patient felt transient vertigo. The ictal electroencephalogram revealed a medium-amplitude spike and slow wave complex originating from the frontal lobes. The patient was treated with oral sodium valproate, levetiracetam, and lamotrigine. After a 6-month follow-up period, her seizures were well controlled. Our findings expand the symptom spectrum of epilepsy, suggesting that vertigo can be an uncommon clinical manifestation of frontal lobe epilepsy. Although the pathological correlation between vertigo and epilepsy remains elusive, our findings indicate that vestibular cortical neurons may participate in periodic epileptiform discharges of the frontal lobe. Clinicians should be aware of a potential diagnosis of epilepsy in patients presenting with vertigo as the onset symptom because this condition is usually underdiagnosed.
Collapse
Affiliation(s)
- Yongning Jiang
- Department of Neurology, Dandong Central Hospital, Dandong, PR China
| | - Xiangqin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Beijing, PR China
| |
Collapse
|
38
|
Nepveu JF, Mikhail Y, Pion CH, Gossard JP, Barthélemy D. Assessment of vestibulocortical interactions during standing in healthy subjects. PLoS One 2020; 15:e0233843. [PMID: 32497147 PMCID: PMC7272097 DOI: 10.1371/journal.pone.0233843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The vestibular system is essential to produce adequate postural responses enabling voluntary movement. However, how the vestibular system influences corticospinal output during postural tasks is still unknown. Here, we examined the modulation exerted by the vestibular system on corticospinal output during standing. Healthy subjects (n = 25) maintained quiet standing, head facing forward with eyes closed. Galvanic vestibular stimulation (GVS) was applied bipolarly and binaurally at different delays prior to transcranial magnetic stimulation (TMS) which triggered motor evoked potentials (MEPs). With the cathode right/anode left configuration, MEPs in right Soleus (SOL) muscle were significantly suppressed when GVS was applied at ISI = 40 and 130ms before TMS. With the anode right/cathode left configuration, no significant changes were observed. Changes in the MEP amplitude were then compared to changes in the ongoing EMG when GVS was applied alone. Only the decrease in MEP amplitude at ISI = 40ms occurred without change in the ongoing EMG, suggesting that modulation occurred at a premotoneuronal level. We further investigated whether vestibular modulation could occur at the motor cortex level by assessing changes in the direct corticospinal pathways using the short-latency facilitation of the SOL Hoffmann reflex (H-reflex) by TMS. None of the observed modulation occurred at the level of motor cortex. Finally, using the long-latency facilitation of the SOL H-reflex, we were able to confirm that the suppression of MEP at ISI = 40ms occurred at a premotoneuronal level. The data indicate that vestibular signals modulate corticospinal output to SOL at both premotoneuronal and motoneuronal levels during standing.
Collapse
Affiliation(s)
- Jean-François Nepveu
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Youstina Mikhail
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montreal, Canada
- School of Rehabilitation, Université de Montréal, Montreal, Canada
| | - Charlotte H. Pion
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montreal, Canada
- School of Rehabilitation, Université de Montréal, Montreal, Canada
| | | | - Dorothy Barthélemy
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montreal, Canada
- School of Rehabilitation, Université de Montréal, Montreal, Canada
- * E-mail:
| |
Collapse
|
39
|
Zhe X, Gao J, Chen L, Zhang D, Tang M, Yan X, Bai F, Zhang X, Zou Z, Chen W, Lei X, Zhang X. Altered structure of the vestibular cortex in patients with vestibular migraine. Brain Behav 2020; 10:e01572. [PMID: 32157823 PMCID: PMC7177586 DOI: 10.1002/brb3.1572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Previous voxel-based morphometry (VBM) studies have revealed changes in brain structure in patients with vestibular migraine (VM); these findings have improved the present understanding of pathophysiology. Few other studies have assessed the association between structural changes and the severity of dizziness in VM. This study aimed to examine the structural changes and cortical morphometric features associated with migraine and vertigo attacks in patients with VM. METHODS Twenty patients with VM and 20 healthy normal volunteers were scanned on a 3-tesla MRI scanner. The gray matter volume (GMV) was estimated using the automated Computational Anatomy Toolbox (CAT12). The relationship between clinical parameters and morphometric abnormalities was also analyzed in VM. RESULTS Compared with controls, VM patients have decreased GMV in the prefrontal cortex (PFC), posterior insula-operculum regions, inferior parietal gyrus, and supramarginal gyrus. Moreover, patient scores on the Dizziness Handicap Inventory (DHI) score showed a negative correlation with GMV in the posterior insula-operculum regions. CONCLUSION These findings demonstrated abnormality in the central vestibular cortex and correlations between dizziness severity and GMV in core regions of the vestibular cortex of VM patients, suggesting a pathophysiological role of these core vestibular regions in VM patients.
Collapse
Affiliation(s)
- Xia Zhe
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fuxia Bai
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin Zhang
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ze Zou
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | | | - Xiaoyan Lei
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
40
|
Piker EG, Jacobson GP, Romero D, Wang Y, Smith K. The Clinical Significance of the Failure to Perceive Vertigo in the Postcaloric Period Despite a Robust Caloric Response. Am J Audiol 2020; 29:50-58. [PMID: 32073288 DOI: 10.1044/2019_aja-19-00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose The purpose of this project was to explore the association between the perception of motion during caloric testing and two tasks associated with central vestibular processing: postural stability and visuospatial memory. Method This was a prospective study of 25 patients who were found to have nonvestibular etiologies of their symptoms and normal vestibular function test results and who underwent caloric testing with a mean maximum slow phase eye velocity for each irrigation of 15° or greater. Following each caloric irrigation, patients were asked whether they had any sensation of movement. Patients were grouped based on the presence or absence of motion during the caloric exam (motion perception vs. absent perception). Postural stability was assessed using computerized dynamic posturography, and visuospatial memory was assessed using a memory match card game application. Results There were no significant differences between groups on any measures of peripheral vestibular function. However, the Absent Perception Group showed greater postural instability during Condition 5 of posturography and performed significantly worse on a task of visuospatial working memory. Both age and absence of motion perception predicted abnormal performance on measures of postural stability and visuospatial working memory. Conclusions There appears to be clinical implications to a lack of motion perception during the caloric exam in patients with an otherwise normal peripheral vestibular system. Based on the current findings, we are unable to determine whether differences in postural stability and visuospatial memory were due to age or a central vestibular processing deficit.
Collapse
Affiliation(s)
- Erin G Piker
- Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, VA
| | - Gary P Jacobson
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Daniel Romero
- Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, VA
| | - Ye Wang
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Kaylee Smith
- Division of Audiology, Department of Otolaryngology, Henry Ford Health System, Detroit, MI
| |
Collapse
|
41
|
Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. Cortical modulation of nociception by galvanic vestibular stimulation: A potential clinical tool? Brain Stimul 2019; 13:60-68. [PMID: 31636023 DOI: 10.1016/j.brs.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Vestibular afferents converge with nociceptive ones within the posterior insula, and can therefore modulate nociception. Consistent with this hypothesis, caloric vestibular stimulation (CVS) has been shown to reduce experimental and clinical pain. Since CVS can induce undesirable effects in a proportion of patients, here we explored an alternative means to activate non-invasively the vestibular pathways using innocuous bi-mastoid galvanic stimulation (GVS), and assessed its effects on experimental pain. METHODS Sixteen healthy volunteers participated in this study. Experimental pain was induced by noxious laser-heat stimuli to the left hand while recording pain ratings and related brain potentials (LEPs). We evaluated changes of these indices during left- or right-anodal GVS (cathode on contralateral mastoid), and contrasted them with those during sham GVS, optokinetic vestibular stimulation (OKS) using virtual reality, and attentional distraction to ascertain the vestibular-specific analgesic effects of GVS. RESULTS GVS elicited brief sensations of head/trunk deviation, inoffensive to all participants. Both active GVS conditions showed analgesic effects, greater for the right anodal stimulation. OKS was helpful to attain significant LEP reductions during the left-anodal stimulation. Neither sham-GVS nor the distraction task were able to modulate significantly pain ratings or LEPs. CONCLUSIONS GVS appeared as a well-tolerated and powerful procedure for the relief of experimental pain, probably through physiological interaction within insular nociceptive networks. Either isolated or in combination with other types of vestibular activation (e.g., optokinetic stimuli), GVS deserves being tested in clinical settings.
Collapse
Affiliation(s)
- Koichi Hagiwara
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France.
| | - Caroline Perchet
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Maud Frot
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Hélène Bastuji
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France; Service de Neurologie Fonctionnelle et D'Épileptologie et Centre Du Sommeil, Hospices Civils de Lyon, Bron, F-69677, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France; Centre D'évaluation et de Traitement de La Douleur, Hôpital Neurologique, Lyon, F-69000, France
| |
Collapse
|
42
|
Devantier L, Hansen AK, Mølby-Henriksen JJ, Christensen CB, Pedersen M, Hansen KV, Magnusson M, Ovesen T, Borghammer P. Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus. Hum Brain Mapp 2019; 41:185-193. [PMID: 31520516 PMCID: PMC7268041 DOI: 10.1002/hbm.24798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/12/2019] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)-PET scans were obtained after natural vestibular stimulation in a self-propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG-PET scan was obtained after sitting motion-less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial-most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea.
Collapse
Affiliation(s)
- Louise Devantier
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oto-Rhino-Laryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Kim V Hansen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Måns Magnusson
- Department of Oto-Rhino-Laryngology, Lund University Hospital, Lund, Sweden
| | - Therese Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oto-Rhino-Laryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
43
|
Guidetti G, Guidetti R, Manfredi M, Manfredi M. Vestibular pathology and spatial working memory. ACTA ACUST UNITED AC 2019; 40:72-78. [PMID: 31388191 PMCID: PMC7147543 DOI: 10.14639/0392-100x-2189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Marco Manfredi
- Vertigo Centre, Poliambulatorio Chirurgico Modenese, Italy
| |
Collapse
|
44
|
Dieterich M, Brandt T. Perception of Verticality and Vestibular Disorders of Balance and Falls. Front Neurol 2019; 10:172. [PMID: 31001184 PMCID: PMC6457206 DOI: 10.3389/fneur.2019.00172] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: To review current knowledge of the perception of verticality, its normal function and disorders. This is based on an integrative graviceptive input from the vertical semicircular canals and the otolith organs. Methods: The special focus is on human psychophysics, neurophysiological and imaging data on the adjustments of subjective visual vertical (SVV) and the subjective postural vertical. Furthermore, examples of mathematical modeling of specific vestibular cell functions for orientation in space in rodents and in patients are briefly presented. Results: Pathological tilts of the SVV in the roll plane are most sensitive and frequent clinical vestibular signs of unilateral lesions extending from the labyrinths via the brainstem and thalamus to the parieto-insular vestibular cortex. Due to crossings of ascending graviceptive fibers, peripheral vestibular and pontomedullary lesions cause ipsilateral tilts of the SVV; ponto-mesencephalic lesions cause contralateral tilts. In contrast, SVV tilts, which are measured in unilateral vestibular lesions at thalamic and cortical levels, have two different characteristic features: (i) they may be ipsi- or contralateral, and (ii) they are smaller than those found in lower brainstem or peripheral lesions. Motor signs such as head tilt and body lateropulsion, components of ocular tilt reaction, are typical for vestibular lesions of the peripheral vestibular organ and the pontomedullary brainstem (vestibular nucleus). They are less frequent in midbrain lesions (interstitial nucleus of Cajal) and rare in cortical lesions. Isolated body lateropulsion is chiefly found in caudal lateral medullary brainstem lesions. Vestibular function in the roll plane and its disorders can be mathematically modeled by an attractor model of angular head velocity cell and head direction cell function. Disorders manifesting with misperception of the body vertical are the pusher syndrome, the progressive supranuclear palsy, or the normal pressure hydrocephalus; they may affect roll and/or pitch plane. Conclusion: Clinical determinations of the SVV are easy and reliable. They indicate acute unilateral vestibular dysfunctions, the causative lesion of which extends from labyrinth to cortex. They allow precise topographical diagnosis of side and level in unilateral brainstem or peripheral vestibular disorders. SVV tilts may coincide with or differ from the perception of body vertical, e.g., in isolated body lateropulsion.
Collapse
Affiliation(s)
- Marianne Dieterich
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.,Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
45
|
Thalamocortical network: a core structure for integrative multimodal vestibular functions. Curr Opin Neurol 2019; 32:154-164. [DOI: 10.1097/wco.0000000000000638] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Frank SM, Greenlee MW. The parieto-insular vestibular cortex in humans: more than a single area? J Neurophysiol 2018; 120:1438-1450. [DOI: 10.1152/jn.00907.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we review the structure and function of a core region in the vestibular cortex of humans that is located in the midposterior Sylvian fissure and referred to as the parieto-insular vestibular cortex (PIVC). Previous studies have investigated PIVC by using vestibular or visual motion stimuli and have observed activations that were distributed across multiple anatomical structures, including the temporo-parietal junction, retroinsula, parietal operculum, and posterior insula. However, it has remained unclear whether all of these anatomical areas correspond to PIVC and whether PIVC responds to both vestibular and visual stimuli. Recent results suggest that the region that has been referred to as PIVC in previous studies consists of multiple areas with different anatomical correlates and different functional specializations. Specifically, a vestibular but not visual area is located in the parietal operculum, close to the posterior insula, and likely corresponds to the nonhuman primate PIVC, while a visual-vestibular area is located in the retroinsular cortex and is referred to, for historical reasons, as the posterior insular cortex area (PIC). In this article, we review the anatomy, connectivity, and function of PIVC and PIC and propose that the core of the human vestibular cortex consists of at least two separate areas, which we refer to together as PIVC+. We also review the organization in the nonhuman primate brain and show that there are parallels to the proposed organization in humans.
Collapse
Affiliation(s)
- Sebastian M. Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Mark W. Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|