1
|
Kuang H, Hong S, Chen Y, Peng H, Li Z, Xie Y, Zhou W, Qin S, Ru J, Jiang J. Altered internetwork functional connectivity and graph analysis of occipital regions in patients with chronic rhinosinusitis accompanied by olfactory dysfunction. Sci Rep 2025; 15:10951. [PMID: 40164733 PMCID: PMC11958658 DOI: 10.1038/s41598-025-95925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
This study assessed whole-brain functional connectivity and network graph theory indices in patients with chronic rhinosinusitis with (CRSwOD) and without (CRSsOD) olfactory dysfunction. We also analyzed correlations between the abnormal network metrics and clinical indices. We acquired resting-state functional magnetic resonance images from 31 patients with CRSsOD, 26 with CRSwOD, and 25 healthy controls (HCs). Functional connectivity was computed and graph theory metrics were evaluated based on the Dosenbach-160 Atlas; relationships between neuroimaging indicators and clinical scales were assessed using Pearson correlation analysis. The results showed that CRSsOD patients had 11 edges with greater strength than HCs, CRSwOD patients had 1 greater edge than HCs, and CRSsOD patients had 5 greater edges than CRSwOD patients. Nodal degree centrality and efficiency in the right posterior occipital region were significantly altered in patients with CRSsOD compared with those in CRSwOD and in HCs. Five and two edges correlated with clinical scales in patients with CRSsOD and CRSwOD, respectively, whereas no correlations in global and nodal indicators were found. These results imply that distinct brain network patterns, particularly in the occipital cortex, could be a valid neuroimaging marker for related diagnosis and prognosis of CRSsOD and CRSwOD patients, and contribute to our better understanding of the central neural mechanisms of CRSwOD, providing new ideas for the clinical management of CRSwOD.
Collapse
Affiliation(s)
- Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Yeyuan Chen
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Hao Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Zihan Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Yangyang Xie
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Wanqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Suhong Qin
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jing Ru
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
2
|
Olivé G, Peñaloza C, Vaquero L, Laine M, Martin N, Rodriguez-Fornells A. The right uncinate fasciculus supports verbal short-term memory in aphasia. Brain Struct Funct 2023; 228:875-893. [PMID: 37005932 PMCID: PMC10147778 DOI: 10.1007/s00429-023-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/05/2023] [Indexed: 04/04/2023]
Abstract
Verbal short-term memory (STM) deficits are associated with language processing impairments in people with aphasia. Importantly, the integrity of STM can predict word learning ability and anomia therapy gains in aphasia. While the recruitment of perilesional and contralesional homologous brain regions has been proposed as a possible mechanism for aphasia recovery, little is known about the white-matter pathways that support verbal STM in post-stroke aphasia. Here, we investigated the relationships between the language-related white matter tracts and verbal STM ability in aphasia. Nineteen participants with post-stroke chronic aphasia completed a subset of verbal STM subtests of the TALSA battery including nonword repetition (phonological STM), pointing span (lexical-semantic STM without language output) and repetition span tasks (lexical-semantic STM with language output). Using a manual deterministic tractography approach, we investigated the micro- and macrostructural properties of the structural language network. Next, we assessed the relationships between individually extracted tract values and verbal STM scores. We found significant correlations between volume measures of the right Uncinate Fasciculus and all three verbal STM scores, with the association between the right UF volume and nonword repetition being the strongest one. These findings suggest that the integrity of the right UF is associated with phonological and lexical-semantic verbal STM ability in aphasia and highlight the potential compensatory role of right-sided ventral white matter language tracts in supporting verbal STM after aphasia-inducing left hemisphere insult.
Collapse
Affiliation(s)
- Guillem Olivé
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Claudia Peñaloza
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Lucía Vaquero
- Legal Medicine, Psychiatry and Pathology Department, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Antoni Rodriguez-Fornells
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Rolls ET, Wirth S, Deco G, Huang C, Feng J. The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum Brain Mapp 2023; 44:629-655. [PMID: 36178249 PMCID: PMC9842927 DOI: 10.1002/hbm.26089] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The human posterior cingulate, retrosplenial, and medial parietal cortex are involved in memory and navigation. The functional anatomy underlying these cognitive functions was investigated by measuring the effective connectivity of these Posterior Cingulate Division (PCD) regions in the Human Connectome Project-MMP1 atlas in 171 HCP participants, and complemented with functional connectivity and diffusion tractography. First, the postero-ventral parts of the PCD (31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward-related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system. This connectivity implicates it in hippocampal episodic memory, providing routes for "what," reward and semantic schema-related information to access the hippocampus. Second, the antero-dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates it in the "where" component for hippocampal episodic memory and for spatial navigation. The dorsal-transitional-visual (DVT) and ProStriate regions where the retrosplenial scene area is located have connectivity from early visual cortical areas to the parahippocampal scene area, providing a ventromedial route for spatial scene information to reach the hippocampus. These connectivities provide important routes for "what," reward, and "where" scene-related information for human hippocampal episodic memory and navigation. The midcingulate cortex provides a route from the anterior dorsal parts of the PCD and the supracallosal part of the anterior cingulate cortex to premotor regions.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229CNRS and University of LyonBronFrance
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- Brain and CognitionPompeu Fabra UniversityBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA)Universitat Pompeu FabraBarcelonaSpain
| | - Chu‐Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Jianfeng Feng
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
4
|
Gao Y, Xiong Z, Wang X, Ren H, Liu R, Bai B, Zhang L, Li D. Abnormal Degree Centrality as a Potential Imaging Biomarker for Right Temporal Lobe Epilepsy: A Resting-state Functional Magnetic Resonance Imaging Study and Support Vector Machine Analysis. Neuroscience 2022; 487:198-206. [PMID: 35158018 DOI: 10.1016/j.neuroscience.2022.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/26/2022]
Abstract
Previous studies have reported altered neuroimaging features in right temporal lobe epilepsy (rTLE). However, the alterations in degree centrality (DC) as a diagnostic method for rTLE have not been reported. Therefore, we aimed to explore abnormalities in the DC of the rTLE and whether such alterations could be applied to the diagnosis of rTLE. Resting-state functional magnetic resonance imaging (fMRI) was used to scan 82 patients with rTLE and 69 healthy controls. The DC and support vector machine (SVM) methods were used for an analysis of the imaging data. Compared to the control group, the rTLE patients exhibited lower DC values in the right hippocampus, right superior temporal gyrus, and right caudate. Compared to the control group, the rTLE patients showed higher DC values in the right medial superior frontal gyrus (SFGmed), left dorsolateral superior frontal gyrus (SFGdor), right inferior parietal lobule (IPL), and the left postcentral. The highest diagnostic accuracy of 99.34% (150/151), based on SVM analysis, was demonstrated for the combination of abnormal DC in the right IPL and the left SFGdor, along with a sensitivity of 100% (82/82), and a specificity of 98.55% (68/69) for the differentiation of rTLE patients from healthy controls. The study demonstrated abnormal functional connectivity in rTLE patients. Thus, a distinctive DC pattern may serve as an imaging marker for the diagnosis of rTLE patients.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenying Xiong
- Department of Psychiatry, Jiangxia District Mental Hospital, Wuhan, China
| | - Xi Wang
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated To Wuhan University of Science and Technology, Wuhan, China
| | - Ruoshi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Bai
- Department of Rehabilitation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dongbin Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
5
|
Yan M, Chen J, Liu F, Li H, Huang R, Tang Y, Zhao J, Guo W. Disrupted Regional Homogeneity in Major Depressive Disorder With Gastrointestinal Symptoms at Rest. Front Psychiatry 2021; 12:636820. [PMID: 34122171 PMCID: PMC8187583 DOI: 10.3389/fpsyt.2021.636820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Gastrointestinal (GI) symptoms are prominent in patients with major depressive disorder (MDD). Previous studies have reported brain structural and functional changes in both MDD and digestive system diseases but it remains unclear whether MDD patients with GI symptoms have brain imaging changes. Methods: We recruited 35 MDD patients with GI symptoms, 17 MDD patients without GI symptoms and 28 age-, gender-, and education-matched healthy controls. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with regional homogeneity (ReHo). Results: The GI group showed higher total HRSD-17 scores, anxiety/somatization, weight loss, and sleep disturbance scores compared to the non-GI group. We found increased ReHo in the right inferior parietal gyrus (IPL), bilateral supplementary motor area (SMA), bilateral cerebellum Crus II, left inferior frontal gyrus (IFG), and bilateral superior medial frontal cortex (SMFC) and decreased ReHo in the right posterior cingulate cortex (PCC), bilateral cuneus, and left middle occipital gyrus (MOG) in patients with GI symptoms relative to the HCs. The GI group showed higher ReHo values in the bilateral precuneus than the non-GI group. Conclusion: MDD patients with GI symptoms showed a greater severity of symptoms than MDD patients without GI symptoms, particularly in terms of anxiety/somatization, weight loss, and sleep disturbances. Increased activity in the default-mode network might be associated with GI symptoms in MDD patients.
Collapse
Affiliation(s)
- Meiqi Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renzhi Huang
- Hunan Key Laboratory of Children's Psychological Development and Brain Cognitive Science, Changsha, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
6
|
Posterior Hippocampal Spindle Ripples Co-occur with Neocortical Theta Bursts and Downstates-Upstates, and Phase-Lock with Parietal Spindles during NREM Sleep in Humans. J Neurosci 2019; 39:8949-8968. [PMID: 31530646 DOI: 10.1523/jneurosci.2858-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/26/2019] [Accepted: 07/13/2019] [Indexed: 01/26/2023] Open
Abstract
Human anterior and posterior hippocampus (aHC, pHC) differ in connectivity and behavioral correlates. Here we report physiological differences in humans of both sexes. During NREM sleep, the human hippocampus generates sharpwave ripples (SWRs) similar to those which in rodents mark memory replay. We show that while pHC generates SWRs, it also generates approximately as many spindle ripples (SSR: ripples phase-locked to local spindles). In contrast, SSRs are rare in aHC. Like SWRs, SSRs often co-occur with neocortical theta bursts (TBs), downstates (DSs), sleep spindles (SSs), and upstates (USs), which coordinate cortico-hippocampal interactions and facilitate consolidation in rodents. SWRs co-occur with these waves in widespread cortical areas, especially frontocentral. These waves typically occur in the sequence TB-DS-SS-US, with SWRs usually occurring before SS-US. In contrast, SSRs occur ∼350 ms later, with a strong preference for co-occurrence with posterior-parietal SSs. pHC-SSs were strongly phase-locked with parietal-SSs, and pHC-SSRs were phase-coupled with pHC-SSs and parietal-SSs. Human SWRs (and associated replay events, if any) are separated by ∼5 s on average, whereas ripples on successive SSR peaks are separated by only ∼80 ms. These distinctive physiological properties of pHC-SSR enable an alternative mechanism for hippocampal engagement with neocortex.SIGNIFICANCE STATEMENT Rodent hippocampal neurons replay waking events during sharpwave ripples (SWRs) in NREM sleep, facilitating memory transfer to a permanent cortical store. We show that human anterior hippocampus also produces SWRs, but spindle ripples predominate in posterior. Whereas SWRs typically occur as cortex emerges from inactivity, spindle ripples typically occur at peak cortical activity. Furthermore, posterior hippocampal spindle ripples are tightly coupled to posterior parietal locations activated by conscious recollection. Finally, multiple spindle ripples can recur within a second, whereas SWRs are separated by ∼5 s. The human posterior hippocampus is considered homologous to rodent dorsal hippocampus, which is thought to be specialized for consolidation of specific memory details. We speculate that these distinct physiological characteristics of posterior hippocampal spindle ripples may support a related function in humans.
Collapse
|