1
|
Griffin CP, Carlson MA, Walker MM, Lynam J, Paul CL. "I'm standing next to him, I'm supporting him"-Supporting a loved one with brain cancer to donate their brain: A qualitative study. Neurooncol Pract 2024; 11:813-820. [PMID: 39554794 PMCID: PMC11567741 DOI: 10.1093/nop/npae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Brain cancer is a devastating and incurable disease that places a high burden of care on next of kin (NOK). NOK can play a core role in supporting end-of-life planning, including the decision to donate one's brain after death. Postmortem brain donation is crucial to research. As postmortem programs develop it is important to understand the experiences of NOK as they support a loved one in the donation decision. Methods Thirteen qualitative interviews were completed with NOK of people who had consented to donate their brains to the Mark Hughes Foundation (MHF) Biobank. A thematic analysis was carried out on the transcribed interviews. Results Four central themes were identified: (i) The carer role has additional responsibilities and psychological benefits when brain donation is being considered; (ii) Supporting a loved one to donate requires mutual trust, understanding, and a commitment to honor agency; (iii) Increasing awareness of brain donation is a priority for NOK, and (iv) Brain donation is seen as a natural continuation of the donor's altruistic values. Conclusions When a person with brain cancer decides to donate their brain to research, their NOK can experience additional burdens and benefits as the NOK-patient relationship evolves. Understanding this evolution and recognizing the importance of trust, advocacy, and altruism provides a guide for the integration of brain donation programs into clinical pathways and a basis for normalizing brain donation as an extension of organ donation frameworks.
Collapse
Affiliation(s)
- Cassandra P Griffin
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Public Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Melissa A Carlson
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Public Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Public Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - James Lynam
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Public Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, New South Wales, Australia
| | - Christine L Paul
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Public Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
2
|
Vornholt E, Liharska LE, Cheng E, Hashemi A, Park YJ, Ziafat K, Wilkins L, Silk H, Linares LM, Thompson RC, Sullivan B, Moya E, Nadkarni GN, Sebra R, Schadt EE, Kopell BH, Charney AW, Beckmann ND. Characterizing cell type specific transcriptional differences between the living and postmortem human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306590. [PMID: 38746297 PMCID: PMC11092720 DOI: 10.1101/2024.05.01.24306590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Single-nucleus RNA sequencing (snRNA-seq) is often used to define gene expression patterns characteristic of brain cell types as well as to identify cell type specific gene expression signatures of neurological and mental illnesses in postmortem human brains. As methods to obtain brain tissue from living individuals emerge, it is essential to characterize gene expression differences associated with tissue originating from either living or postmortem subjects using snRNA-seq, and to assess whether and how such differences may impact snRNA-seq studies of brain tissue. To address this, human prefrontal cortex single nuclei gene expression was generated and compared between 31 samples from living individuals and 21 postmortem samples. The same cell types were consistently identified in living and postmortem nuclei, though for each cell type, a large proportion of genes were differentially expressed between samples from postmortem and living individuals. Notably, estimation of cell type proportions by cell type deconvolution of pseudo-bulk data was found to be more accurate in samples from living individuals. To allow for future integration of living and postmortem brain gene expression, a model was developed that quantifies from gene expression data the probability a human brain tissue sample was obtained postmortem. These probabilities are established as a means to statistically account for the gene expression differences between samples from living and postmortem individuals. Together, the results presented here provide a deep characterization of both differences between snRNA-seq derived from samples from living and postmortem individuals, as well as qualify and account for their effect on common analyses performed on this type of data.
Collapse
|
3
|
Liharska LE, Park YJ, Ziafat K, Wilkins L, Silk H, Linares LM, Vornholt E, Sullivan B, Cohen V, Kota P, Feng C, Cheng E, Moya E, Thompson RC, Johnson JS, Rieder MK, Huang J, Scarpa J, Hashemi A, Polanco J, Levin MA, Nadkarni GN, Sebra R, Crary J, Schadt EE, Beckmann ND, Kopell BH, Charney AW. A study of gene expression in the living human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.21.23288916. [PMID: 37163086 PMCID: PMC10168405 DOI: 10.1101/2023.04.21.23288916] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A goal of medical research is to determine the molecular basis of human brain health and illness. One way to achieve this goal is through observational studies of gene expression in human brain tissue. Due to the unavailability of brain tissue from living people, most such studies are performed using tissue from postmortem brain donors. An assumption underlying this practice is that gene expression in the postmortem human brain is an accurate representation of gene expression in the living human brain. Here, this assumption - which, until now, had not been adequately tested - is tested by comparing human prefrontal cortex gene expression between 275 living samples and 243 postmortem samples. Expression levels differed significantly for nearly 80% of genes, and a systematic examination of alternative explanations for this observation determined that these differences are not a consequence of cell type composition, RNA quality, postmortem interval, age, medication, morbidity, symptom severity, tissue pathology, sample handling, batch effects, or computational methods utilized. Analyses integrating the data generated for this study with data from earlier landmark studies that used tissue from postmortem brain donors showed that postmortem brain gene expression signatures of neurological and mental illnesses, as well as of normal traits such as aging, may not be accurate representations of these gene expression signatures in the living brain. By using tissue from large cohorts living people, future observational studies of human brain biology have the potential to (1) determine the medical research questions that can be addressed using postmortem tissue as a proxy for living tissue and (2) expand the scope of medical research to include questions about the molecular basis of human brain health and illness that can only be addressed in living people (e.g., "What happens at the molecular level in the brain as a person experiences an emotion?").
Collapse
|
4
|
Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci U S A 2022; 119:e2111405119. [PMID: 35294277 PMCID: PMC8944747 DOI: 10.1073/pnas.2111405119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our results demonstrate the existence of early cellular pathways and network alterations in oligodendrocytes in the alpha-synucleinopathies Parkinson’s disease and multiple system atrophy. They further reveal the involvement of an immune component triggered by alpha-synuclein protein, as well as a connection between (epi)genetic changes and immune reactivity in multiple system atrophy. The knowledge generated in this study could be used to devise novel therapeutic approaches to treat synucleinopathies. Limited evidence has shed light on how aSYN proteins affect the oligodendrocyte phenotype and pathogenesis in synucleinopathies that include Parkinson’s disease (PD) and multiple system atrophy (MSA). Here, we investigated early transcriptomic changes within PD and MSA O4+ oligodendrocyte lineage cells (OLCs) generated from patient-induced pluripotent stem cells (iPSCs). We found impaired maturation of PD and MSA O4+ OLCs compared to controls. This phenotype was associated with changes in the human leukocyte antigen (HLA) genes, the immunoproteasome subunit PSMB9, and the complement component C4b for aSYN p.A53T and MSA O4+ OLCs, but not in SNCAtrip O4+ OLCs despite high levels of aSYN assembly formation. Moreover, SNCA overexpression resulted in the development of O4+ OLCs, whereas exogenous treatment with aSYN species led to significant toxicity. Notably, transcriptome profiling of genes encoding proteins forming Lewy bodies and glial cytoplasmic inclusions revealed clustering of PD aSYN p.A53T O4+ OLCs with MSA O4+ OLCs. Our work identifies early phenotypic and pathogenic changes within human PD and MSA O4+ OLCs.
Collapse
|
5
|
Griffin CP, Paul CL, Alexander KL, Walker MM, Hondermarck H, Lynam J. Postmortem brain donations vs premortem surgical resections for glioblastoma research: viewing the matter as a whole. Neurooncol Adv 2022; 4:vdab168. [PMID: 35047819 PMCID: PMC8760897 DOI: 10.1093/noajnl/vdab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There have been limited improvements in diagnosis, treatment, and outcomes of primary brain cancers, including glioblastoma, over the past 10 years. This is largely attributable to persistent deficits in understanding brain tumor biology and pathogenesis due to a lack of high-quality biological research specimens. Traditional, premortem, surgical biopsy samples do not allow full characterization of the spatial and temporal heterogeneity of glioblastoma, nor capture end-stage disease to allow full evaluation of the evolutionary and mutational processes that lead to treatment resistance and recurrence. Furthermore, the necessity of ensuring sufficient viable tissue is available for histopathological diagnosis, while minimizing surgically induced functional deficit, leaves minimal tissue for research purposes and results in formalin fixation of most surgical specimens. Postmortem brain donation programs are rapidly gaining support due to their unique ability to address the limitations associated with surgical tissue sampling. Collecting, processing, and preserving tissue samples intended solely for research provides both a spatial and temporal view of tumor heterogeneity as well as the opportunity to fully characterize end-stage disease from histological and molecular standpoints. This review explores the limitations of traditional sample collection and the opportunities afforded by postmortem brain donations for future neurobiological cancer research.
Collapse
Affiliation(s)
- Cassandra P Griffin
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Biobank: NSW Regional Biospecimen and Research Services, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christine L Paul
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre Cancer Research, Innovation and Translation, University of Newcastle, New South Wales, Australia
- Priority Research Centre Health Behaviour, University of Newcastle, New South Wales, Australia
| | - Kimberley L Alexander
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, New South Wales, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Marjorie M Walker
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - James Lynam
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, New South Wales, Australia
| |
Collapse
|
6
|
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Hum Mol Genet 2021; 29:2551-2567. [PMID: 32761094 PMCID: PMC7471505 DOI: 10.1093/hmg/ddaa139] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Collapse
Affiliation(s)
- Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - James V Giordano
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pedram Razghandi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Constanze R Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Sarah M von Hein
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Suman Jayadaev
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Geriatrics Research Education and Clinical Center, VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Fernandez-Cerado C, Legarda GP, Velasco-Andrada MS, Aguil A, Ganza-Bautista NG, Lagarde JBB, Soria J, Jamora RDG, Acuña PJ, Vanderburg C, Sapp E, DiFiglia M, Murcar MG, Campion L, Ozelius LJ, Alessi AK, Singh-Bains MK, Waldvogel HJ, Faull RLM, Macalintal-Canlas R, Muñoz EL, Penney EB, Ang MA, Diesta CCE, Bragg DC, Acuña-Sunshine G. Promise and challenges of dystonia brain banking: establishing a human tissue repository for studies of X-Linked Dystonia-Parkinsonism. J Neural Transm (Vienna) 2021; 128:575-587. [PMID: 33439365 PMCID: PMC8099813 DOI: 10.1007/s00702-020-02286-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023]
Abstract
X-Linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease affecting individuals with ancestry to the island of Panay in the Philippines. In recent years there has been considerable progress at elucidating the genetic basis of XDP and candidate disease mechanisms in patient-derived cellular models, but the neural substrates that give rise to XDP in vivo are still poorly understood. Previous studies of limited XDP postmortem brain samples have reported a selective dropout of medium spiny neurons within the striatum, although neuroimaging of XDP patients has detected additional abnormalities in multiple brain regions beyond the basal ganglia. Given the need to fully define the CNS structures that are affected in this disease, we created a brain bank in Panay to serve as a tissue resource for detailed studies of XDP-related neuropathology. Here we describe this platform, from donor recruitment and consent to tissue collection, processing, and storage, that was assembled within a predominantly rural region of the Philippines with limited access to medical and laboratory facilities. Thirty-six brains from XDP individuals have been collected over an initial 4 years period. Tissue quality was assessed based on histologic staining of cortex, RNA integrity scores, detection of neuronal transcripts in situ by fluorescent hybridization chain reaction, and western blotting of neuronal and glial proteins. The results indicate that this pipeline preserves tissue integrity to an extent compatible with a range of morphologic, molecular, and biochemical analyses. Thus the algorithms that we developed for working in rural communities may serve as a guide for establishing similar brain banks for other rare diseases in indigenous populations.
Collapse
Affiliation(s)
| | - G Paul Legarda
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | - Abegail Aguil
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | | | - Jasmin Soria
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Patrick J Acuña
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Ellen Sapp
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Micaela G Murcar
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Lindsey Campion
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Amy K Alessi
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Malvindar K Singh-Bains
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Ellen B Penney
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | - D Cristopher Bragg
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| | - Geraldine Acuña-Sunshine
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines. .,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| |
Collapse
|
8
|
Jonkman LE, Graaf YGD, Bulk M, Kaaij E, Pouwels PJW, Barkhof F, Rozemuller AJM, van der Weerd L, Geurts JJG, van de Berg WDJ. Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls. NEUROIMAGE-CLINICAL 2019; 22:101698. [PMID: 30711684 PMCID: PMC6360607 DOI: 10.1016/j.nicl.2019.101698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Well-characterized, high-quality brain tissue of non-neurological control subjects is a prerequisite to study the healthy aging brain, and can serve as a control for the study of neurological disorders. The Normal Aging Brain Collection Amsterdam (NABCA) provides a comprehensive collection of post-mortem (ultra-)high-field MRI (3Tesla and 7 Tesla) and neuropathological datasets of non-neurological controls. By providing MRI within the pipeline, NABCA uniquely stimulates translational neurosciences; from molecular and morphometric tissue studies to the clinical setting. We describe our pipeline, including a description of our on-call autopsy team, donor selection, in situ and ex vivo post-mortem MRI protocols, brain dissection and neuropathological diagnosis. A demographic, radiological and pathological overview of five selected cases on all these aspects is provided. Additionally, information is given on data management, data and tissue application procedures, including review by a scientific advisory board, and setting up a material transfer agreement before distribution of tissue. Finally, we focus on future prospects, which includes laying the foundation for a unique platform for neuroanatomical, histopathological and neuro-radiological education, of professionals, students and the general (lay) audience. NABCA provides a collection of correlative post-mortem MRI and pathological datasets. Non-neurological control brains for studies on aging and neurological disorders. Stimulating micro- to macroscale structural exploration within same patient Post-mortem MRI data and tissue available for integrated advanced data analytics
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Yvon Galis-de Graaf
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Eliane Kaaij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Department of radiology and nuclear medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of radiology and nuclear medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institutes of neurology and healthcare engineering, University College London, London, United Kingdom
| | - Annemieke J M Rozemuller
- Department of pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Shepherd CE, Alvendia H, Halliday GM. Brain Banking for Research into Neurodegenerative Disorders and Ageing. Neurosci Bull 2019; 35:283-288. [PMID: 30604281 DOI: 10.1007/s12264-018-0326-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/27/2018] [Indexed: 10/27/2022] Open
Abstract
Advances in cellular and molecular biology underpin most current therapeutic advances in medicine. Such advances for neurological and neurodegenerative diseases are hindered by the lack of similar specimens. It is becoming increasingly evident that greater access to human brain tissue is necessary to understand both the cellular biology of these diseases and their variation. Research in these areas is vital to the development of viable therapeutic options for these currently untreatable diseases. The development and coordination of human brain specimen collection through brain banks is evolving. This perspective article from the Sydney Brain Bank reviews data concerning the best ways to collect and store material for different research purposes.
Collapse
Affiliation(s)
- Claire E Shepherd
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Holly Alvendia
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia.,New York University, New York, NY, USA
| | - Glenda M Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia. .,Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Trujillo Diaz D, Hernandez NC, Cortes EP, Faust PL, Vonsattel JPG, Louis ED. Banking brains: a pre-mortem "how to" guide to successful donation. Cell Tissue Bank 2018; 19:473-488. [PMID: 30220002 DOI: 10.1007/s10561-018-9720-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
A review of the brain banking literature reveals a primary focus either on the factors that influence the decision to become a future donor or on the brain tissue processing that takes place after the individual has died (i.e., the front-end or back-end processes). What has not been sufficiently detailed, however, is the complex and involved process that takes place after this decision to become a future donor is made yet before post-mortem processing occurs (i.e., the large middle-ground). This generally represents a period of many years during which the brain bank is actively engaged with donors to ensure that valuable clinical information is prospectively collected and that their donation is eventually completed. For the past 15 years, the Essential Tremor Centralized Brain Repository has been actively involved in brain banking, and our experience has provided us valuable insights that may be useful for researchers interested in establishing their own brain banking efforts. In this piece, we fill a gap in the literature by detailing the processes of enrolling participants, creating individualized brain donation plans, collecting clinical information and regularly following-up with donors to update that information, and efficiently coordinating the brain harvest when death finally arrives.
Collapse
Affiliation(s)
- Daniel Trujillo Diaz
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nora C Hernandez
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jean Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|