1
|
Veith Sanches L, Greten S, Doll-Lee J, Rogozinski SM, Heine J, Krey L, Ulaganathan S, Jensen I, Höllerhage M, Sani SS, Höglinger GU, Wegner F, Klietz M. SEND-PD in Parkinsonian Syndromes: Results of a Monocentric Cross-Sectional Study. Neuropsychiatr Dis Treat 2024; 20:1849-1859. [PMID: 39372876 PMCID: PMC11453152 DOI: 10.2147/ndt.s474584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Neuropsychiatric symptoms in particular impair health-related quality of life (QoL) of patients with Parkinson's disease and atypical Parkinsonian syndromes. For this reason, various scales have been developed for detection of neuropsychiatric symptoms, such as the Scale for evaluation of neuropsychiatric disorders in Parkinson's disease (SEND-PD). Objective First, the objective of this study was to explore the interrelation between the SEND-PD and clinical parameters in patients with Parkinson's disease and thus confirm its validity. In addition, the applicability in a well-defined cohort of patients with atypical Parkinsonian syndromes was investigated for the very first time. Methods A clinically well-defined cohort of 122 patients with Parkinson's disease (PD), 55 patients with Progressive Supranuclear Palsy (PSP) and 33 patients with Multiple System Atrophy (MSA) were analyzed. First, the SEND-PD was correlated with established disease-specific scores in patients with PD. Next, the results of the SEND-PD were compared between the different Parkinsonian syndromes. Results The SEND-PD showed a strong significant correlation with several scores, especially the UPDRS I (Rho = 0.655) and GDS-15 (Rho = 0.645). Depressive burden was significantly higher in MSA patients in comparison to the PD patient cohort (PD, 3.8 ± 3.3; MSA, 5.45 ± 3.87), while PSP patients showed significantly less psychotic (PD 1.6 ± 2.1; PSP 0.6 ± 0.9) and impulse control disorders (PD 0.3 ± 1.0; PSP 0.02 ± 0.1). Conclusion The SEND-PD is a useful, brief and highly applicable screening tool for neuropsychiatric symptoms in PD, but not in atypical Parkinsonism, as their unique neuropsychiatric symptom composition is not fully captured.
Collapse
Affiliation(s)
| | - Stephan Greten
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johanna Doll-Lee
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Johanne Heine
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Lea Krey
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Ida Jensen
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | | | - Sam Sadeghi Sani
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Günter U Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
DeRosier F, Hibbs C, Alessi K, Padda I, Rodriguez J, Pradeep S, Parmar MS. Progressive supranuclear palsy: Neuropathology, clinical presentation, diagnostic challenges, management, and emerging therapies. Dis Mon 2024; 70:101753. [PMID: 38908985 DOI: 10.1016/j.disamonth.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by the accumulation of 4R-tau protein aggregates in various brain regions. PSP leads to neuronal loss, gliosis, and tau-positive inclusions, such as neurofibrillary tangles, tufted astrocytes, and coiled bodies. These pathological changes mainly affect the brainstem and the basal ganglia, resulting in distinctive MRI features, such as the hummingbird and morning glory signs. PSP shows clinical heterogeneity and presents as different phenotypes, the most classical of which is Richardson's syndrome (PSP-RS). The region of involvement and the mode of atrophy spread can further distinguish subtypes of PSP. PSP patients can experience various signs and symptoms, such as postural instability, supranuclear ophthalmoplegia, low amplitude fast finger tapping, and irregular sleep patterns. The most common symptoms of PSP are postural instability, falls, vertical gaze palsy, bradykinesia, and cognitive impairment. These features often overlap with those of Parkinson's disease (PD) and other Parkinsonian syndromes, making the diagnosis challenging. PSP is an essential clinical topic to research because it is a devastating and incurable disease. However, there are still many gaps in knowledge about its pathophysiology, diagnosis, and treatment. Several clinical trials are underway to test noveltherapies that target tau in various ways, such as modulating its post-translational modifications, stabilizing its interaction with microtubules, or enhancing its clearance by immunotherapy. These approaches may offer new hope for slowing down the progression of PSP. In this review, we aim to provide an overview of the current knowledge on PSP, from its pathogenesis to its management. We also discuss the latest advances and future directions in PSP research.
Collapse
Affiliation(s)
- Frederick DeRosier
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Cody Hibbs
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Kaitlyn Alessi
- Department of Family Medicine, University of Florida, Gainesville, United States of America
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York, United States of America
| | - Jeanette Rodriguez
- Department of Family Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
| | - Swati Pradeep
- Department of Movement Disorders, UTHealth Houston Neurosciences Neurology - Texas Medical Center, Texas, United States of America
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America.
| |
Collapse
|
3
|
Murthy M, Fodder K, Miki Y, Rambarack N, De Pablo Fernandez E, Pihlstrøm L, Mill J, Warner TT, Lashley T, Bettencourt C. DNA methylation patterns in the frontal lobe white matter of multiple system atrophy, Parkinson's disease, and progressive supranuclear palsy: a cross-comparative investigation. Acta Neuropathol 2024; 148:4. [PMID: 38995454 PMCID: PMC11245434 DOI: 10.1007/s00401-024-02764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP), posing challenges in early diagnosis. Numerous studies have reported alterations in DNA methylation in neurodegenerative diseases, with candidate loci being identified in various parkinsonian disorders including MSA, PD, and PSP. Although MSA and PSP present with substantial white matter pathology, alterations in white matter have also been reported in PD. However, studies comparing the DNA methylation architectures of white matter in these diseases are lacking. We therefore aimed to investigate genome-wide DNA methylation patterns in the frontal lobe white matter of individuals with MSA (n = 17), PD (n = 17), and PSP (n = 16) along with controls (n = 15) using the Illumina EPIC array, to identify shared and disease-specific DNA methylation alterations. Genome-wide DNA methylation profiling of frontal lobe white matter in the three parkinsonian disorders revealed substantial commonalities in DNA methylation alterations in MSA, PD, and PSP. We further used weighted gene correlation network analysis to identify disease-associated co-methylation signatures and identified dysregulation in processes relating to Wnt signaling, signal transduction, endoplasmic reticulum stress, mitochondrial processes, RNA interference, and endosomal transport to be shared between these parkinsonian disorders. Our overall analysis points toward more similarities in DNA methylation patterns between MSA and PD, both synucleinopathies, compared to that between MSA and PD with PSP, which is a tauopathy. Our results also highlight several shared DNA methylation changes and pathways indicative of converging molecular mechanisms in the white matter contributing toward neurodegeneration in all three parkinsonian disorders.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naiomi Rambarack
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eduardo De Pablo Fernandez
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
4
|
Chen Q, Hu X, Zhang T, Ruan Q, Wu H. Association between Parkinson disease and selenium levels in the body: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e37919. [PMID: 38669409 PMCID: PMC11049729 DOI: 10.1097/md.0000000000037919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson disease (PD) is a common neurodegenerative disorder, but its pathogenesis is still not entirely understood. While some trace elements, such as selenium, iron, and copper, are considered pivotal in PD onset due to their role in oxidative stress, the association between selenium concentrations and PD susceptibility remains ambiguous. METHODS A systematic review and meta-analysis was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and framed by the Patient, Intervention, Comparison, Outcome paradigm. Data were sourced from 4 prominent electronic databases: PubMed, Embase, Web of Science, and Cochrane Library. Eligible studies must have had a PD case group and a control group, both of which presented data on selenium concentrations. The quality of the studies was assessed using the Newcastle-Ottawa Scale. RESULTS Of 1541 initially identified articles, 12 studies comprising a total of 597 PD cases and 733 controls were selected for the meta-analysis. Pronounced heterogeneity was observed among these studies. When assessing blood selenium levels, no significant difference was found between patients with PD and the controls. However, when examining the cerebrospinal fluid, selenium levels in PD patients were significantly elevated compared to controls (standard mean difference = 1.21, 95% CI 0.04-2.39, P < .05). Subgroup analyses, sensitivity analyses, and evaluation of publication bias were performed to ensure data robustness. CONCLUSIONS Elevated selenium levels in cerebrospinal fluid may be associated with a higher risk of Parkinson. Further prospective research is required to solidify this potential link and to offer avenues for novel therapeutic interventions or preventive measures.
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ting Zhang
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qianying Ruan
- Department of Blood Transfusion Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongye Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Pasqualotto A, da Silva V, Pellenz FM, Schuh AFS, Schwartz IVD, Siebert M. Identification of metabolic pathways and key genes associated with atypical parkinsonism using a systems biology approach. Metab Brain Dis 2024; 39:577-587. [PMID: 38305999 DOI: 10.1007/s11011-024-01342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024]
Abstract
Atypical parkinsonism (AP) is a group of complex neurodegenerative disorders with marked clinical and pathophysiological heterogeneity. The use of systems biology tools may contribute to the characterization of hub-bottleneck genes, and the identification of its biological pathways to broaden the understanding of the bases of these disorders. A systematic search was performed on the DisGeNET database, which integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. The tools STRING 11.0 and Cytoscape 3.8.2 were used for analysis of protein-protein interaction (PPI) network. The PPI network topography analyses were performed using the CytoHubba 0.1 plugin for Cytoscape. The hub and bottleneck genes were inserted into 4 different sets on the InteractiveVenn. Additional functional enrichment analyses were performed to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology for a described set of genes. The systematic search in the DisGeNET database identified 485 genes involved with Atypical Parkinsonism. Superimposing these genes, we detected a total of 31 hub-bottleneck genes. Moreover, our functional enrichment analyses demonstrated the involvement of these hub-bottleneck genes in 3 major KEGG pathways. We identified 31 highly interconnected hub-bottleneck genes through a systems biology approach, which may play a key role in the pathogenesis of atypical parkinsonism. The functional enrichment analyses showed that these genes are involved in several biological processes and pathways, such as the glial cell development, glial cell activation and cognition, pathways were related to Alzheimer disease and Parkinson disease. As a hypothesis, we highlight as possible key genes for AP the MAPT (microtubule associated protein tau), APOE (apolipoprotein E), SNCA (synuclein alpha) and APP (amyloid beta precursor protein) genes.
Collapse
Affiliation(s)
- Amanda Pasqualotto
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Felipe Mateus Pellenz
- Serviço de Endocrinologia, -Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Artur Francisco Schumacher Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Departatamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Marina Siebert
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós Graduação em Hepatologia e Gastroenterologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Tang WK, Hui E, Leung TWH. Behavioral disinhibition in stroke. Front Neurol 2024; 15:1345756. [PMID: 38500811 PMCID: PMC10944941 DOI: 10.3389/fneur.2024.1345756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Background Post-stroke behavioral disinhibition (PSBD) is common in stroke survivors and often presents as impulsive, tactless or vulgar behavior. However, it often remains undiagnosed and thus untreated, even though it can lead to a longer length of stay in a rehabilitation facility. The proposed study will aim to evaluate the clinical, neuropsychological and magnetic resonance imaging (MRI) correlates of PSBD in a cohort of stroke survivors and describe its 12-month course. Methods This prospective cohort study will recruit 237 patients and will be conducted at the Neurology Unit of the Prince of Wales Hospital. The project duration will be 24 months. The patients will be examined by multiple MRI methods, including diffusion-weighted imaging, within 1 week after stroke onset. The patients and their caregivers will receive a detailed assessment at a research clinic at 3, 9 and 15 months after stroke onset (T1, T2 and T3, respectively). The disinhibition subscale of the Frontal Systems Behavior Scale (FrSBe) will be completed by each subject and caregiver, and scores ≥65 will be considered to indicate PSBD.A stepwise logistic regression will be performed to assess the importance of lesions in the regions of interest (ROIs), together with other significant variables identified in the univariate analyses. For patients with PSBD at T1, the FrSBe disinhibition scores will be compared between the groups of patients with and without ROI infarcts, using covariance analysis. The demographic, clinical and MRI variables of remitters and non-remitters will be examined again at T2 and T3 by logistic regression. Discussion This project will be the first MRI study on PSBD in stroke survivors. The results will shed light on the associations of lesions in the orbitofrontal cortex, anterior temporal lobe and subcortical brain structures with the risk of PSBD. The obtained data will advance our understanding of the pathogenesis and clinical course of PSBD in stroke, as well as other neurological conditions. The findings are thus likely to be applicable to the large population of patients with neurological disorders at risk of PSBD and are expected to stimulate further research in this field.
Collapse
Affiliation(s)
- Wai Kwong Tang
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Edward Hui
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Thomas Wai Hong Leung
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Backman EA, Luntamo L, Parkkola R, Koikkalainen J, Gardberg M, Kaasinen V. Early cortical atrophy is related to depression in patients with neuropathologically confirmed Parkinson's disease. J Neurol Sci 2023; 455:122804. [PMID: 37992556 DOI: 10.1016/j.jns.2023.122804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE Depression is a common comorbidity in Parkinson's disease (PD) and other synucleinopathies. In non-PD geriatric patients, cortical atrophy has previously been connected to depression. Here, we investigated cortical atrophy and vascular white matter hyperintensities (WMHs) in autopsy-confirmed parkinsonism patients with the focus on clinical depression. METHODS The sample consisted of 50 patients with a postmortem confirmed neuropathological diagnosis (30 Parkinson's disease [PD], 10 progressive supranuclear palsy [PSP] and 10 multiple system atrophy [MSA]). Each patient had been scanned with brain computerized tomography (CT) antemortem (median motor symptom duration at scanning = 3.0 years), and 19 patients were scanned again after a mean interval of 2.7 years. Medial temporal atrophy (MTA), global cortical atrophy (GCA) and WMHs were evaluated computationally from CT scans using an image quantification tool based on convolutional neural networks. Depression and other clinical parameters were recorded from patient files. RESULTS Depression was associated with increased MTA after controlling for diagnosis, age, symptom duration, and cognition (p = 0.006). A similar finding was observed with GCA (p = 0.017) but not with WMH (p = 0.47). In PD patients alone, the result was confirmed for MTA (p = 0.021) with the same covariates. In the longitudinal analysis, GCA change per year was more severe in depressed patients than in nondepressed patients (p = 0.029). CONCLUSIONS Early medial temporal and global cortical atrophy, as detected with automated analysis of CT-images using convolutional neural networks, is associated with clinical depression in parkinsonism patients. Global cortical atrophy seems to progress faster in depressed patients.
Collapse
Affiliation(s)
- Emmilotta A Backman
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland.
| | - Laura Luntamo
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland.
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland.
| | | | - Maria Gardberg
- Tyks Laboratories, Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
8
|
Wodwaski N. Progressive Supranuclear Palsy: Challenges and Considerations for Care Transitions. Crit Care Nurs Clin North Am 2023; 35:393-401. [PMID: 37838414 DOI: 10.1016/j.cnc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Progressive supranuclear palsy (PSP) is a fatal neurodegenerative disorder. Care requires a patient-centered approach encompassing compassion, communication, and empathy. Despite concerted actions to streamline PSP patient transitions, the care is multifaceted and cause of concern. Patients with PSP undergoing transitional care are at an increased risk of undesirable outcomes, frequently endure poor communication, and encounter inconsistent care. Therefore, patients with PSP and families worry about the uncertainty in care, including who is accountable for the care and available resources. Through the three spheres of impact, Clinical Nurse Specialists can educate and assist intensive care unit nurses caring for patients with PSP /families, aiding in the successful care transition.
Collapse
Affiliation(s)
- Nadine Wodwaski
- University of Detroit Mercy, 4001 West McNichols Road, Detroit, MI 48221, USA.
| |
Collapse
|
9
|
Seritan AL. Advances in the Diagnosis and Management of Psychotic Symptoms in Neurodegenerative Diseases: A Narrative Review. J Geriatr Psychiatry Neurol 2023; 36:435-460. [PMID: 36941085 PMCID: PMC10578041 DOI: 10.1177/08919887231164357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Background: Approximately 15% of older adults may experience psychotic phenomena. Primary psychiatric disorders that manifest with psychosis (delusions, hallucinations, and disorganized thought or behavior) account for less than half. Up to 60% of late-life psychotic symptoms are due to systemic medical or neurological conditions, particularly neurodegenerative diseases. A thorough medical workup including laboratory tests, additional procedures if indicated, and neuroimaging studies is recommended. This narrative review summarizes current evidence regarding the epidemiology and phenomenology of psychotic symptoms encountered as part of the neurodegenerative disease continuum (including prodromal and manifest stages). Results: Prodromes are constellations of symptoms that precede the onset of overt neurodegenerative syndromes. Prodromal psychotic features, particularly delusions, have been associated with an increased likelihood of receiving a neurodegenerative disease diagnosis within several years. Prompt prodrome recognition is crucial for early intervention. The management of psychosis associated with neurodegenerative diseases includes behavioral and somatic strategies, although evidence is scarce and mostly limited to case reports, case series, or expert consensus guidelines, with few randomized controlled trials. Conclusion: The complexity of psychotic manifestations warrants management by interprofessional teams that provide coordinated, integrated care.
Collapse
Affiliation(s)
- Andreea L. Seritan
- University of California, San Francisco Department of Psychiatry and UCSF Weill Institute for Neurosciences, CA, USA
| |
Collapse
|
10
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
11
|
Chmiela T, Węgrzynek J, Kasprzyk A, Waksmundzki D, Wilczek D, Gorzkowska A. If Not Insulin Resistance so What? - Comparison of Fasting Glycemia in Idiopathic Parkinson's Disease and Atypical Parkinsonism. Diabetes Metab Syndr Obes 2022; 15:1451-1460. [PMID: 35586204 PMCID: PMC9109887 DOI: 10.2147/dmso.s359856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a synucleinopathy, which presents dysautonomia, as its common non-motor symptom. Some research suggests the existing interplay between the autonomic nervous system dysfunction and glucose metabolism dysregulation in PD. OBJECTIVE To determine the prevalence of metabolic disorders with particular emphasis on glucose metabolism in patients with PD and atypical parkinsonism (AP). PATIENTS AND METHODS A retrospective study was performed by analyzing 461 clinical data of consecutive patients diagnosed with PD, multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) hospitalized from 2019 to 2021 in the authors' institution. The study group included 350 patients (303 PD, 14 MSA, 33 PSP), aged 65.8 ± 9.7 years (42% were female). Laboratory results (fasting glycemia, lipid parameters, TSH, homocysteine and vitamin D3 levels) were collected. The patient's clinical condition was assessed in III part of Unified Parkinson's Disease Rating Scale (UPDRS p. III), Hoehn-Yahr scale, Mini Mental State Examination (MMSE) and Beck Depression Inventory (BDI). RESULTS Impaired fasting glycemia (IGF) was more prevalent in PD than in the PSP (43.43% vs 18.18%; p = 0.043). Similarly, PD presented a higher level of fasting glycemia (102.4 ± 16.7 mg/dl vs 92.2 ± 16.1mg/dl; p = 0.042). According to lipid parameters, patients with PD showed lower LDL cholesterol (92.3 ± 44.3mg/dl vs 119 ± 61.0mg/dl; p = 0.016) and lower BMI compared to patients with PSP (26.1 ± 4.0kg/m2 vs 29.3 ± 4.4 kg/m2; p = 0.024), but there were no statistically significant differences in triglycerides (TG) and HDL cholesterol levels. Males with PD presented greater frequency of IFG (35.05% vs 50.6%; p = 0.042), higher fasting glycemia (99.1 ± 14.3mg/dl vs 103.7 ± 14.7mg/dl; p = 0.006), lower total cholesterol, HDL cholesterol, and BMI compared to women with PD. CONCLUSION Our investigation supports an association between synucleinopathies and glucose metabolism dysregulation.
Collapse
Affiliation(s)
- Tomasz Chmiela
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Correspondence: Tomasz Chmiela, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland, Tel +48 32 789 46 01, Fax +48 32 789 45 55, Email
| | - Julia Węgrzynek
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Amadeusz Kasprzyk
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Damian Waksmundzki
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dawid Wilczek
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This comprehensive review of mood disorders brings together the past and current literature on the diagnosis, evaluation, and treatment of the depressive and bipolar disorders. It highlights the primary mood disorders and secondary neurologic causes of mood disorders that are commonly encountered in a clinical setting. As the literature and our understanding evolve, recent additions to the current literature are important to bring forth to the readers. RECENT FINDINGS Advancements in clinical medicine have strengthened our understanding of the associations of neurologic and psychiatric diseases. This article highlights the medications frequently used with newly identified mood disorders and the common side effects of these medications. A paradigm shift has moved toward newer treatment modalities, such as the use of ketamine, repetitive transcranial magnetic stimulation, and complementary and alternative medicine. The risks and benefits of such therapies, along with medications, are reviewed in this article. SUMMARY Mood disorders are extraordinarily complex disorders with significant association with many neurologic disorders. Early identification of these mood disorders can prevent significant morbidity and mortality associated with them. With further expansion of pharmacologic options, more targeted therapy is possible in improving quality of life for patients.
Collapse
|
13
|
Nakagaki T, Nishida N, Satoh K. Development of α-Synuclein Real-Time Quaking-Induced Conversion as a Diagnostic Method for α-Synucleinopathies. Front Aging Neurosci 2021; 13:703984. [PMID: 34650422 PMCID: PMC8510559 DOI: 10.3389/fnagi.2021.703984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy are characterized by aggregation of abnormal α-synuclein (α-syn) and collectively referred to as α-synucleinopathy. Because these diseases have different prognoses and treatments, it is desirable to diagnose them early and accurately. However, it is difficult to accurately diagnose these diseases by clinical symptoms because symptoms such as muscle rigidity, postural dysreflexia, and dementia sometimes overlap among these diseases. The process of conformational conversion and aggregation of α-syn has been thought similar to that of abnormal prion proteins that cause prion diseases. In recent years, in vitro conversion methods, such as real-time quaking-induced conversion (RT-QuIC), have been developed. This method has succeeded in amplifying and detecting trace amounts of abnormal prion proteins in tissues and central spinal fluid of patients by inducing conversion of recombinant prion proteins via shaking. Additionally, it has been used for antemortem diagnosis of prion diseases. Recently, aggregated α-syn has also been amplified and detected in patients by applying this method and many clinical studies have examined diagnosis using tissues or cerebral spinal fluid from patients. In this review, we discuss the utility and problems of α-syn RT-QuIC for antemortem diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
14
|
Suicidal and death ideation in patients with progressive supranuclear palsy and corticobasal syndrome. J Affect Disord 2020; 276:1061-1068. [PMID: 32768878 DOI: 10.1016/j.jad.2020.07.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A large proportion of patients with atypical parkinsonian syndromes suffer from depression, an antecedent of suicide. This study aimed to explore the prevalence and clinical correlates of suicidal and death ideation (SDI) in patients with Progressive Supranuclear Palsy (PSP) and Corticobasal Syndrome (CBS), as well as compare the differences with patients with Parkinson's disease (PD). METHODS This was a case-control, cross-sectional study. SDI was diagnosed based on the assessment of the Hamilton Depression Rating Scale (HRDS). The prevalence of SDI among patients with PD, PSP, and CBS (n = 3400, 268, and 65 respectively) were compared before and after propensity score matching (PSM). A forward binary logistic regression model was used to explore the associated factors of SDI. RESULTS None of the patients reported suicide attempts. The prevalence of SDI in patients with PSP and CBS were 27.2% and 29.2%, respectively, which was significantly higher than that in patients with PD before and after PSM (P < 0.05). The prevalence of SDI was not significantly different among patients with PSP with different subtypes (Richardson syndrome, Parkinsonism, and other), both before and after PSM (P > 0.05). Multivariate analysis indicated that higher gait and midline score and depression were independently associated with an increased risk of SDI in patients with PSP (P < 0.05), while higher non-motor symptoms score and depression were independently associated with the occurrence of SDI in patients with CBS (P < 0.05). CONCLUSIONS Our study highlights the importance of screening SDI in patients with PSP and CBS.
Collapse
|
15
|
Schirinzi T, Canevelli M, Suppa A, Bologna M, Marsili L. The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal. Rev Neurosci 2020; 31:723-742. [DOI: 10.1515/revneuro-2020-0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 01/09/2023]
Abstract
Abstract
While the “physiological” aging process is associated with declines in motor and cognitive features, these changes do not significantly impair functions and activities of daily living. Differently, motor and cognitive impairment constitute the most common phenotypic expressions of neurodegeneration. Both manifestations frequently coexist in the same disease, thus making difficult to detect “pure” motor or cognitive conditions. Movement disorders are often characterized by cognitive disturbances, and neurodegenerative dementias often exhibit the occurrence of movement disorders. Such a phenotypic overlap suggests approaching these conditions by highlighting the commonalities of entities traditionally considered distinct. In the present review, we critically reappraised the common clinical and pathophysiological aspects of neurodegeneration in both animal models and patients, looking at motricity as a trait d’union over the spectrum of neurodegeneration and focusing on synaptopathy and oscillopathy as the common pathogenic background. Finally, we discussed the possible role of movement as neuroprotective intervention in neurodegenerative conditions, regardless of the etiology. The identification of commonalities is critical to drive future research and develop novel possible disease-modifying interventions.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Marco Canevelli
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- National Center for Disease Prevention and Health Promotion, National Institute of Health , Rome , Italy
| | - Antonio Suppa
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Matteo Bologna
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders , University of Cincinnati , 260 Stetson Street , Cincinnati , 45219, OH , USA
| |
Collapse
|