1
|
Holm A, Orenius T, Karttunen N, Ristolainen L, Kautiainen H, Hurri H. Impact of antidepressant medication on the analgetic effect of repetitive transcranial magnetic stimulation treatment of neuropathic pain. Preliminary findings from a registry study. Scand J Pain 2023; 23:670-676. [PMID: 37459208 DOI: 10.1515/sjpain-2023-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has been found to be effective in chronic neuropathic pain conditions. However, information about the combined effects of rTMS and antidepressant treatment is scarce. We studied the outcome of rTMS and concurrent antidepressant treatment in patients with neuropathic pain. METHODS In this retrospective, real-world study, 34 patients with neuropathic pain, who were considered resistant or not benefitting from conventional treatment, received rTMS treatment between 2017 and 2020. Pain-related factors were measured using the Numerical Rating Scale (NRS), Global Impression of Change (GIC), and Beck Depression Inventory. RESULTS A decrease in pain intensity and pain interference assessed with NRS was observed after 10 treatment sessions in 16 patients. The impression of change was positive in 20 patients. Half of the patients (n=17) used antidepressant medication, while half (n=17) did not. A concurrent use of antidepressants with therapeutic rTMS was significantly linked with less pain intensity relief when compared with the nonuse of antidepressants (p=0.019). The impression of change was significantly in favor of the antidepressant nonuser group (p=0.002). No group differences in pain interference were found between the groups. CONCLUSIONS Therapeutic rTMS for neuropathic pain is plausibly sensitive to interference with antidepressant medication. The exact mechanism of our findings remains to be elucidated; confirmatory studies are warranted.
Collapse
Affiliation(s)
- Anu Holm
- Satakunta University of Applied Sciences (SAMK), Pori, Finland
- SataDiag, Hospital District of Satakunta, Pori, Finland
- Recuror Oy, Turku, Finland
| | | | - Nina Karttunen
- Satakunta University of Applied Sciences (SAMK), Pori, Finland
- SataDiag, Hospital District of Satakunta, Pori, Finland
| | | | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, Helsinki, Finland
- Department of General Practice, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
2
|
Sussman D, Tassone VK, Gholamali Nezhad F, Wu M, Adamsahib F, Mattina GF, Pazmino-Canizares J, Demchenko I, Jung H, Lou W, Ladha KS, Bhat V. Local Injection for Treating Mood Disorders (LIFT-MOOD): A Pilot Feasibility RCT of Stellate Ganglion Block for Treatment-Resistant Depression. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231160315. [PMID: 36895443 PMCID: PMC9989395 DOI: 10.1177/24705470231160315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
Background With nearly one-third of patients with major depressive disorder being resistant to available antidepressants, there is a need to develop new treatments for this population. Stellate ganglion block (SGB) is a procedure used to block sympathetic input to the central autonomic system; it has been administered to treat several conditions, including pain. Recently, indications for SGB have extended and the potential benefits for psychiatric disorders are under investigation. Methods The Local Injection For Treating Mood Disorders (LIFT-MOOD) study investigated the feasibility of a trial of 2 right-sided injections of bupivacaine 0.5% (7 mL) at the stellate ganglion in participants with treatment-resistant depression (TRD) using a randomized, placebo-controlled, pilot trial. Ten participants were randomized in a 1:1 allocation to receive active treatment or placebo (saline). Primary feasibility outcomes included recruitment rate, withdrawal, adherence, missing data, and adverse events. As a secondary, exploratory objective, we explored the efficacy of SGB in improving symptoms of depression by calculating the change in scores from baseline to follow-up on day 42 for each treatment group. Results The recruitment rate was reasonable and sufficient, retention and adherence were high, missing data were low, and adverse events were mild and temporary. Both treatment groups demonstrated decreases in Montgomery-Åsberg Depression Rating Scale scores, compared to baseline, by the end of the study. Conclusion This study supports the feasibility of a confirmatory trial of SGB in participants with TRD. Conclusions regarding efficacy cannot be made based on this preliminary study due to the small number of participants who completed active treatment. Larger-scale randomized controlled trials with long-term follow-ups and alternate sham procedures are needed to assess the efficacy and duration of symptom improvement with the use of SGB in TRD.
Collapse
Affiliation(s)
- David Sussman
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Michelle Wu
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fathima Adamsahib
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Hyejung Jung
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wendy Lou
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Karim S Ladha
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Jhumka ZA, Abdus-Saboor IJ. Next generation behavioral sequencing for advancing pain quantification. Curr Opin Neurobiol 2022; 76:102598. [PMID: 35780688 DOI: 10.1016/j.conb.2022.102598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.
Collapse
Affiliation(s)
- Z Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. https://twitter.com/AnissaJhumka
| | - Ishmail J Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. ia2458columbia.edu
| |
Collapse
|
4
|
Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:946846. [PMID: 35859655 PMCID: PMC9289261 DOI: 10.3389/fpain.2022.946846] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.
Collapse
Affiliation(s)
- Jia-Xuan Yang
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Zhun Chen
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Han-Yu Li
- Second School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Chen Hu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - An-An Yu
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jun-Jun Wen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Si-Jia Chen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei-Dong Lai
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Song Wang
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yan Jin
| | - Jie Yu
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
- Jie Yu
| |
Collapse
|
5
|
Sun Y, Wang J, Liang SH, Ge J, Lu YC, Li JN, Chen YB, Luo DS, Li H, Li YQ. Involvement of the Ventrolateral Periaqueductal Gray Matter-Central Medial Thalamic Nucleus-Basolateral Amygdala Pathway in Neuropathic Pain Regulation of Rats. Front Neuroanat 2020; 14:32. [PMID: 32792913 PMCID: PMC7394700 DOI: 10.3389/fnana.2020.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022] Open
Abstract
The central medial nucleus (CM), a prominent cell group of the intralaminar nuclei (ILN) of the thalamus, and the ventrolateral periaqueductal gray matter (vlPAG) are two major components of the medial pain system. Whether vlPAG and CM are input sources of nociceptive information to the basolateral amygdala (BLA) and whether they are involved in neuropathic pain regulation remain unclear. Clarifying the hierarchical organization of these subcortical nuclei (vlPAG, CM, and BLA) can enhance our understanding on the neural circuits for pain regulation. Behavioral test results showed that a CM lesion made by kainic acid (KA) injection could effectively alleviate mechanical hyperalgesia 4, 6, and 8 days after spared nerve injury (SNI) surgery, with the symptoms returning after 10 days. Morphological studies revealed that: (1) the CM received afferents from vlPAG and sent efferents to BLA, indicating that an indirect vlPAG–CM–BLA pathway exists; (2) such CM–BLA projections were primarily excitatory glutamatergic neurons as revealed by fluorescence in situ hybridization; (3) the fibers originated from the CM-formed close contacts with both excitatory and inhibitory neurons in the BLA; and (4) BLA-projecting CM neurons expressed Fos induced by SNI and formed close contacts with fibers from vlPAG, suggesting that the vlPAG–CM–BLA indirect pathway was activated in neuropathic pain conditions. Finally, the vlPAG–CM–BLA indirect pathway was further confirmed using anterograde and monosynaptic virus tracing investigation. In summary, our present results provide behavioral and morphological evidence that the indirect vlPAG–CM–BLA pathway might be a novel pain pathway involved in neuropathic pain regulation.
Collapse
Affiliation(s)
- Yi Sun
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jian Wang
- Department of Cardiovascular Surgery, the General Hospital of Western Theater Command, Chengdu, China
| | - Shao-Hua Liang
- Department of Human Anatomy, Binzhou Medical University, Yantai, China
| | - Jun Ge
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Yan-Bing Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dao-Shu Luo
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China.,Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China.,Department of Human Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|