1
|
Alkhotani AM, Al sulaimi JF, Bana AA, Abu Alela H. Incidence of seizures in ICU patients with diffuse encephalopathy and its predictors. Medicine (Baltimore) 2024; 103:e38974. [PMID: 39029046 PMCID: PMC11398733 DOI: 10.1097/md.0000000000038974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Encephalopathy is a diffuse brain dysfunction that results from systemic disorder. Patients with diffuse encephalopathy are at risk of developing clinical and electrographic seizures. The aim of this study is to assess the prevalence of electrographic seizures in a setting of encephalopathy and the clinical and electroencephalogram predictors. We retrospectively reviewed all continuous electroencephalograms done between 2019 and 2022. Continuous electroencephalograms with diffuse encephalopathy were included in the study. A total of 128 patients with diffuse encephalopathy were included in this study. Patients' ages ranged from 18 to 96 years old with a mean age of 55.3 ± 19.2 years old. Nine out of 128 patients had seizures with an incidence of 7%. Sixty-six point six percent were nonconvulsive electrographic seizures. Fourteen point three percent of the female patients with diffuse encephalopathy had seizures as compared to none of the male patients (P = .002). Also, 12% of patients with a history of epilepsy experienced seizures versus 5.8% of patients without this history (P = .049). Among electrographic features, 25% of patients with delta background had seizures versus 2.3% of the other patients (P = .048). Likewise, 90% of patients with periodic discharges developed seizures in comparison with none of the patients without (P = .001). Seizures are seen in 7% of patients with diffuse encephalopathy. Female gender, past history of epilepsy, delta background and periodic discharges are significant predictors of seizure development in patients with diffuse encephalopathy.
Collapse
Affiliation(s)
- Amal M Alkhotani
- Department of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Afaf Ali Bana
- Department of Neurology, King Abdulla Medical City, Makkah, Saudi Arabia
| | - Hanadi Abu Alela
- Department of Neurology, King Abdulla Medical City, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Stasenko SV, Hramov AE, Kazantsev VB. Loss of neuron network coherence induced by virus-infected astrocytes: a model study. Sci Rep 2023; 13:6401. [PMID: 37076526 PMCID: PMC10115799 DOI: 10.1038/s41598-023-33622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2023] [Indexed: 04/21/2023] Open
Abstract
Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, in some cases, the failure of network coherence may be intermittent, with intervals of normal rhythmicity, or the synchronization can disappear.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022.
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303.
| | - Alexander E Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia, 236041
- Neuroscience Research Institute, Samara State Medical University, Samara, Russia, 443099
| | - Victor B Kazantsev
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303
| |
Collapse
|
3
|
Herrera-Diaz A, Boshra R, Tavakoli P, Lin CYA, Pajankar N, Bagheri E, Kolesar R, Fox-Robichaud A, Hamielec C, Reilly JP, Connolly JF. Tracking auditory mismatch negativity responses during full conscious state and coma. Front Neurol 2023; 14:1111691. [PMID: 36970526 PMCID: PMC10036371 DOI: 10.3389/fneur.2023.1111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
The mismatch negativity (MMN) is considered the electrophysiological change-detection response of the brain, and therefore a valuable clinical tool for monitoring functional changes associated with return to consciousness after severe brain injury. Using an auditory multi-deviant oddball paradigm, we tracked auditory MMN responses in seventeen healthy controls over a 12-h period, and in three comatose patients assessed over 24 h at two time points. We investigated whether the MMN responses show fluctuations in detectability over time in full conscious awareness, or whether such fluctuations are rather a feature of coma. Three methods of analysis were utilized to determine whether the MMN and subsequent event-related potential (ERP) components could be identified: traditional visual analysis, permutation t-test, and Bayesian analysis. The results showed that the MMN responses elicited to the duration deviant-stimuli are elicited and reliably detected over the course of several hours in healthy controls, at both group and single-subject levels. Preliminary findings in three comatose patients provide further evidence that the MMN is often present in coma, varying within a single patient from easily detectable to undetectable at different times. This highlights the fact that regular and repeated assessments are extremely important when using MMN as a neurophysiological predictor of coma emergence.
Collapse
Affiliation(s)
- Adianes Herrera-Diaz
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- *Correspondence: Adianes Herrera-Diaz
| | - Rober Boshra
- Princenton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Paniz Tavakoli
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
| | - Chia-Yu A. Lin
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
| | - Netri Pajankar
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Elham Bagheri
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Richard Kolesar
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Alison Fox-Robichaud
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Critical Care Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Cindy Hamielec
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Critical Care Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | - James P. Reilly
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - John F. Connolly
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- VoxNeuro, Inc., Toronto, ON, Canada
| |
Collapse
|
4
|
Hosseini P, Whincup R, Devan K, Ghanem DA, Fanshawe JB, Saini A, Cross B, Vijay A, Mastellari T, Vivekananda U, White S, Brunnhuber F, Zandi MS, David AS, Carter B, Oliver D, Lewis G, Fry C, Mehta PR, Stanton B, Rogers JP. The role of the electroencephalogram (EEG) in determining the aetiology of catatonia: a systematic review and meta-analysis of diagnostic test accuracy. EClinicalMedicine 2023; 56:101808. [PMID: 36636294 PMCID: PMC9829703 DOI: 10.1016/j.eclinm.2022.101808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Background Catatonia is a psychomotor syndrome that has a wide range of aetiologies. Determining whether catatonia is due to a medical or psychiatric cause is important for directing treatment but is clinically challenging. We aimed to ascertain the performance of the electroencephalogram (EEG) in determining whether catatonia has a medical or psychiatric cause, conventionally defined. Methods In this systematic review and meta-analysis of diagnostic test accuracy (PROSPERO CRD42021239027), Medline, EMBASE, PsycInfo, and AMED were searched from inception to May 11, 2022 for articles published in peer-reviewed journals that reported EEG findings in catatonia of a medical or psychiatric origin and were reported in English, French, or Italian. Eligible study types were clinical trials, cohort studies, case-control studies, cross-sectional studies, case series, and case reports. The reference standard was the final clinical diagnosis. Data extraction was conducted using individual patient-level data, where available, by two authors. We prespecified two types of studies to overcome the limitations anticipated in the data: larger studies (n ≥ 5), which were suitable for formal meta-analytic methods but generally lacked detailed information about participants, and smaller studies (n < 5), which were unsuitable for formal meta-analytic methods but had detailed individual patient level data, enabling additional sensitivity analyses. Risk of bias and applicability were assessed with the QUADAS-2 tool for larger studies, and with a published tool designed for case reports and series for smaller studies. The primary outcomes were sensitivity and specificity, which were derived using a bivariate mixed-effects regression model. Findings 355 studies were included, spanning 707 patients. Of the 12 larger studies (5 cohort studies and 7 case series), 308 patients were included with a mean age of 48.2 (SD = 8.9) years. 85 (52.8%) were reported as male and 99 had catatonia due to a general medical condition. In the larger studies, we found that an abnormal EEG predicted a medical cause of catatonia with a sensitivity of 0.82 (95% CI 0.67-0.91) and a specificity of 0.66 (95% CI 0.45-0.82) with an I 2 of 74% (95% CI 42-100%). The area under the summary ROC curve offered excellent discrimination (AUC = 0.83). The positive likelihood ratio was 2.4 (95% CI 1.4-4.1) and the negative likelihood ratio was 0.28 (95% CI 0.15-0.51). Only 5 studies had low concerns in terms of risk of bias and applicability, but a sensitivity analysis limited to these studies was similar to the main analysis. Among the 343 smaller studies, 399 patients were included, resulting in a sensitivity of 0.76 (95% CI 0.71-0.81), specificity of 0.67 (0.57-0.76) and AUC = 0.71 (95% CI 0.67-0.76). In multiple sensitivity analyses, the results were robust to the exclusion of reports of studies and individuals considered at high risk of bias. Features of limbic encephalitis, epileptiform discharges, focal abnormality, or status epilepticus were highly specific to medical catatonia, but features of encephalopathy had only moderate specificity and occurred in 23% of the cases of psychiatric catatonia in smaller studies. Interpretation In cases of diagnostic uncertainty, the EEG should be used alongside other investigations to ascertain whether the underlying cause of catatonia is medical. The main limitation of this review is the differing thresholds for considering an EEG abnormal between studies. Funding Wellcome Trust, NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust.
Collapse
Affiliation(s)
- Paris Hosseini
- Department of Neuropsychiatry, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Karrish Devan
- South London and Maudsley NHS Foundation Trust, London, UK
| | | | | | - Aman Saini
- Medical School, University College London, London, UK
| | | | - Apoorva Vijay
- GKT School of Medical Education, King's College London, London, UK
| | - Tomas Mastellari
- Division of Psychiatry, University College London, London, UK
- Inserm U1172, CHU de Lille, Lille Neuroscience & Cognition (LilNCog), Université de Lille, Lille, France
| | - Umesh Vivekananda
- Department of Clinical and Experimental Epilepsy, Institute of Neurology UCL, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Steven White
- Department of Clinical Neurophysiology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Franz Brunnhuber
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Michael S. Zandi
- National Hospital for Neurology and Neurosurgery, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - Anthony S. David
- Institute of Mental Health, University College London, London, UK
| | - Ben Carter
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Dominic Oliver
- Department of Psychosis Studies, King's College London, London, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Charles Fry
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Puja R. Mehta
- Queen Square Institute of Neurology, University College London, London, UK
| | - Biba Stanton
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
- Neuropsychiatry Service, South London and Maudsley NHS Trust, St. Thomas' Hospital, London, UK
| | - Jonathan P. Rogers
- South London and Maudsley NHS Foundation Trust, London, UK
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
5
|
Influence of High-Frequency Repetitive Transcranial Magnetic Stimulation on Neurobehavioral and Electrophysiology in Patients with Disorders of Consciousness. Neural Plast 2022; 2022:7195699. [PMID: 36437902 PMCID: PMC9699789 DOI: 10.1155/2022/7195699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objective High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been proposed as a promising therapeutic intervention for patients with disorders of consciousness (DOC). However, its therapeutic effects in the literature are inconsistently documented. The primary aim of this study was to explore the alterations in neural connectivity and neurobehavioral reactivity during rTMS modulation in patients with DOC. In addition, safety was investigated as a secondary aim. Methods The presence of bilateral N20 components in DOC patients was determined by somatosensory-evoked potential (SEP) before enrollment in the study. A total of 64 patients were enrolled and randomly placed into the active and sham groups. Ultimately, 50 patients completed the study. Twenty-five patients in the active group underwent real HF-rTMS, and 25 patients in the sham group underwent sham HF-rTMS, which was delivered over the left dorsolateral prefrontal cortex (DLPFC). The outcome measures of performed pre- and postintervention included the latencies of the N20 and N20-P25 amplitudes of SEP, brainstem auditory-evoked potential (BAEP) grade, JFK Coma Recovery Scale-Revised (CRS-R) score, and Glasgow Coma Scale (GCS) score; any adverse events were recorded at any time during the intervention. Result Following six weeks of treatment, a significant increase was observed in the total CRS-R and GCS scores, and the N20-P25 amplitudes of patients in the two groups were compared with that obtained from preintervention (all p values < 0.05). The waves of BAEP in the two groups also showed a trend toward normalized activity compared with preintervention grades (p values < 0.05). A significant decrease in the latencies of N20 (p values < 0.001) was observed in the active group compared with measurements obtained from preintervention, whereas no significant decrease was observed in the sham group (p values = 0.013). The improvement in total CRS-R scores (p values = 0.002), total GCS scores (p values = 0.023), and N20-P25 amplitudes (p values = 0.011) as well as the decrease in latencies of N20 (p values = 0.018) and change in BAEP grades (p values = 0.013) were significantly different between the two groups. The parameters in neural connectivity (N20-P25 amplitudes, N20 latencies, and BAEP grades) were significantly correlated with the total CRS-R and GCS scores at postintervention, and the changes of CRS-R before and after interventions have a positive relationship with N20-P25 amplitudes. No adverse events related to the rTMS protocol were recorded. Conclusion Neural connectivity levels are affected by HF-rTMS and are significantly related to clinical responses in DOC patients with the presence of bilateral N20. The elevation of neural connectivity levels may lay a foundation for successful HF-rTMS treatment for DOC patients.
Collapse
|
6
|
Tatum WO. EEG Essentials. Continuum (Minneap Minn) 2022; 28:261-305. [PMID: 35393960 DOI: 10.1212/con.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW EEG is the best study for evaluating the electrophysiologic function of the brain. The relevance of EEG is based on an accurate interpretation of the recording. Understanding the neuroscientific basis for EEG is essential. The basis for recording and interpreting EEG is both brain site-specific and technique-dependent to detect and represent a complex series of waveforms. Separating normal from abnormal EEG lies at the foundation of essential interpretative skills. RECENT FINDINGS Seizures and epilepsy are the primary targets for clinical use of EEG in diagnosis, seizure classification, and management. Interictal epileptiform discharges on EEG support a clinical diagnosis of seizures, but only when an electrographic seizure is recorded is the diagnosis confirmed. New variations of normal waveforms, benign variants, and artifacts can mimic epileptiform patterns and are potential pitfalls for misinterpretation for inexperienced interpreters. A plethora of medical conditions involve nonepileptiform and epileptiform abnormalities on EEG along the continuum of people who appear healthy to those who are critically ill. Emerging trends in long-term EEG monitoring to diagnose, classify, quantify, and characterize patients with seizures have unveiled epilepsy syndromes in patients and expanded medical and surgical options for treatment. Advances in terminology and application of continuous EEG help unify neurologists in the diagnosis of nonconvulsive seizures and status epilepticus in patients with encephalopathy and prognosticate recovery from serious neurologic injury involving the brain. SUMMARY After 100 years, EEG has retained a key role in the neurologist's toolkit as a safe, widely available, versatile, portable test of neurophysiology, and it is likely to remain at the forefront for patients with neurologic diseases. Interpreting EEG is based on qualitative review, and therefore, the accuracy of reporting is based on the interpreter's training, experience, and exposure to many new and older waveforms.
Collapse
|
7
|
Lima GO, Menezes da Silva AL, Azevedo JEC, Nascimento CP, Vieira LR, Hamoy AO, Oliveira Ferreira L, Bahia VRLO, Muto NA, Lopes DCF, Hamoy M. 100 YEARS OF VITAMIN D: Supraphysiological doses of vitamin D changes brainwave activity patterns in rats. Endocr Connect 2022; 11:EC-21-0457.R2. [PMID: 35148281 PMCID: PMC8942315 DOI: 10.1530/ec-21-0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Collapse
Affiliation(s)
- Gabriella Oliveira Lima
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Alex Luiz Menezes da Silva
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Julianne Elba Cunha Azevedo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Chirlene Pinheiro Nascimento
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luana Rodrigues Vieira
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Nilton Akio Muto
- Amazon Bioactive Compounds Valorization Center, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
- Correspondence should be addressed to D C F Lopes or M Hamoy: or
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
- Correspondence should be addressed to D C F Lopes or M Hamoy: or
| |
Collapse
|
8
|
Du coma et de l’éveil : reprise de conscience et image du corps en réanimation. EVOLUTION PSYCHIATRIQUE 2022. [DOI: 10.1016/j.evopsy.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
9
|
Pruvost-Robieux E, Marchi A, Martinelli I, Bouchereau E, Gavaret M. Evoked and Event-Related Potentials as Biomarkers of Consciousness State and Recovery. J Clin Neurophysiol 2022; 39:22-31. [PMID: 34474424 PMCID: PMC8715993 DOI: 10.1097/wnp.0000000000000762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SUMMARY The definition of consciousness has been the subject of great interest for many scientists and philosophers. To better understand how evoked potentials may be identified as biomarkers of consciousness and recovery, the different theoretical models sustaining neural correlates of consciousness are reviewed. A multimodal approach can help to better predict clinical outcome in patients presenting with disorders of consciousness. Evoked potentials are inexpensive and easy-to-implement bedside examination techniques. Evoked potentials are an integral part of prognostic evaluation, particularly in cases of cognitive motor dissociation. Prognostic criteria are well established in postanoxic disorders of consciousness, especially postcardiac arrest but are less well determined in other etiologies. In the early examination, bilateral absence of N20 in disorder of consciousness patients is strongly associated with unfavorable outcome (i.e., death or unresponsive wakefulness syndrome) especially in postanoxic etiologies. This predictive value is lower in other etiologies and probably also in children. Both N20 and mismatch negativity are proven outcome predictors for acute coma. Many studies have shown that mismatch negativity and P3a are characterized by a high prognostic value for awakening, but some patients presenting unresponsive wakefulness syndrome also process a P3a. The presence of long-latency event-related potential components in response to stimuli is indicative of a better recovery. All neurophysiological data must be integrated within a multimodal approach combining repeated clinical evaluation, neuroimaging, functional imaging, biology, and neurophysiology combining passive and active paradigms.
Collapse
Affiliation(s)
- Estelle Pruvost-Robieux
- Neurophysiology Department, GHU Paris Psychiatry & Neurosciences, Sainte Anne, Paris, France
- Paris University, Paris, France
| | - Angela Marchi
- Neurophysiology Department, GHU Paris Psychiatry & Neurosciences, Sainte Anne, Paris, France
| | - Ilaria Martinelli
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero, Universitaria di Modena, Modena, Italy;
| | - Eléonore Bouchereau
- Department of Anesthesiology and intensive care, GHU Paris Psychiatry & Neurosciences, Sainte Anne, Paris, France; and
| | - Martine Gavaret
- Neurophysiology Department, GHU Paris Psychiatry & Neurosciences, Sainte Anne, Paris, France
- Paris University, Paris, France
- INSERM UMR 1266, Paris, France
| |
Collapse
|
10
|
Rossi Sebastiano D, Varotto G, Sattin D, Franceschetti S. EEG Assessment in Patients With Disorders of Consciousness: Aims, Advantages, Limits, and Pitfalls. Front Neurol 2021; 12:649849. [PMID: 33868153 PMCID: PMC8047055 DOI: 10.3389/fneur.2021.649849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
This study presents a brief review of literature exploring simple EEG-polygraphic examinations and procedures that can be carried out at a patient's bedside. These include EEG with a common electrode array and sleep evaluation. The review briefly discusses more complex analytical techniques, such as the application of advanced EEG signal processing methods developed by our research group, to define what type of consistent markers are suitable for clinical use or to better understand complex patient conditions. These advanced analytical techniques aim to detect relevant EEG-based markers that could be useful in evaluating patients and predicting outcomes. These data could contribute to future developments in research.
Collapse
Affiliation(s)
- Davide Rossi Sebastiano
- Department of Neurophysiopathology, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulia Varotto
- Department of Neurophysiopathology, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
- Epilepsy Unit, Bioengineering Group, Fondazione I.R.C.C.S. istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Sattin
- Department of Neurology, Public Health and Disability, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvana Franceschetti
- Department of Neurophysiopathology, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Carton-Leclercq A, Lecas S, Chavez M, Charpier S, Mahon S. Neuronal excitability and sensory responsiveness in the thalamo-cortical network in a novel rat model of isoelectric brain state. J Physiol 2020; 599:609-629. [PMID: 33095909 DOI: 10.1113/jp280266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS The neuronal and network properties that persist during an isoelectric coma remain largely unknown. We developed a new in vivo rat model to assess cell excitability and sensory responsiveness in the thalamo-cortical pathway during an isoflurane-induced isoelectric brain state. The isoelectric electrocorticogram reflected a complete interruption of spontaneous synaptic and firing activities in cortical and thalamic neurons. Cell excitability and sensory responses in the thalamo-cortical network persisted at a reduced level in the isoelectric condition and returned to control values after resumption of background brain activity. These findings could lead to a reassessment of the functional status of the drug-induced isoelectric state: a latent state in which individual neurons and networks retain to some extent the ability of being activated by external inputs. ABSTRACT The neuronal and network properties that persist in an isoelectric brain completely deprived of spontaneous electrical activity remain largely unexplored. Here, we developed a new in vivo rat model to examine cell excitability and sensory responsiveness in somatosensory thalamo-cortical networks during the interruption of endogenous brain activity induced by high doses of isoflurane. Electrocorticograms (ECoGs) from the barrel cortex were captured simultaneously with either intracellular recordings of subjacent cortical pyramidal neurons or extracellular records of the related thalamo-cortical neurons. Isoelectric ECoG periods reflected the disappearance of spontaneous synaptic and firing activities in cortical and thalamic neurons. This was associated with a sustained membrane hyperpolarization and a reduced intrinsic excitability in deep-layer cortical neurons, without significant changes in their membrane input resistance. Concomitantly, we found that whisker-evoked potentials in the ECoG and synaptic responses in cortical neurons were attenuated in amplitude and increased in latency. Impaired responsiveness in the barrel cortex paralleled with a lowering of the sensory-induced firing in thalamic cells. The return of endogenous brain electrical activities, after reinstatement of a control isoflurane concentration, led to the recovery of cortical neurons excitability and sensory responsiveness. These findings demonstrate the persistence of a certain level of cell excitability and sensory integration in the isoelectric state and the full recovery of cortico-thalamic functions after restoration of internal cerebral activities.
Collapse
Affiliation(s)
- Antoine Carton-Leclercq
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sarah Lecas
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, UPMC Université Paris, Paris, France
| | - Mario Chavez
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Stéphane Charpier
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, UPMC Université Paris, Paris, France
| | - Séverine Mahon
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
12
|
Abstract
PURPOSE Triphasic waves (TWs) have been associated with a host of medication toxicities, and cefepime has emerged recently as a frequently encountered offending agent. This investigation aims to evaluate cefepime-induced encephalopathy and to report the associated clinical, EEG expression with TWs, and the radiologic findings. METHODS A retrospective multicenter observational study examining adult patients with cefepime-induced encephalopathy with generalized periodic discharges on either routine or continuous EEG between January 2014 and January 2020. Clinical, electrographic, and radiologic data were collected. Patients in whom cefepime was not the sole causative factor for their encephalopathy were excluded. RESULTS Twenty-seven patients with cefepime-induced encephalopathy marked by generalized periodic discharges with triphasic morphology were identified at both centers, whereas no patients were presenting with generalized periodic discharges without TWs. Patients had a median age of 63 years (interquartile range, 56-73). Fifty-six percent of the cohort (15 patients) were <65 years of age. Eighteen patients (67%) had either acute or chronic kidney impairment (either acute kidney injury or chronic kidney disease or both), whereas 81% had preexisting white matter disease on brain imaging. Of these, 14 patients (51%) were classified as either moderate or severe. In the majority of the patients, TWs were either state-dependent or stimulus-sensitive, and in one third of them presented only as stimulus-induced pattern. All patients improved with discontinuation of cefepime. CONCLUSIONS Cefepime toxicity should be considered in the differential diagnosis in encephalopathic patients with TWs. The presence of preexisting white matter disease in these patients should heighten the degree of suspicion, especially in younger patients and patients without renal dysfunction.
Collapse
|