1
|
Ybarra M, Selvanathan T, Guo T, Chau V, Branson HM, Ly LG, Synnes AR, Kelly E, Grunau RE, Miller SP, Tam EWY. Hemodynamic Risk Factors for Cerebellar Hemorrhage Presence and Volume in Infants Born Very Preterm. J Pediatr 2025; 280:114503. [PMID: 39922271 DOI: 10.1016/j.jpeds.2025.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE To examine among infants born very preterm the role of hemodynamic disturbances in the occurrence of cerebellar hemorrhage (CbH) and whether cardiovascular instability is associated with larger CbH volume. STUDY DESIGN Prospective, longitudinal, multisite cohort study. Early-life and/or term-equivalent age brain magnetic resonance imaging were performed in 309 very preterm infants admitted to 3 tertiary-level neonatal intensive care units. A cut-off of 4 mm was used to distinguish punctate vs large CbH. CbH volumes were obtained by manual segmentation. As a measure of hemodynamic stability, Score for Neonatal Acute Physiology, patent ductus arteriosus requiring treatment, and hypotension treated with inotropes were recorded. RESULTS Sixty patients (18.3%) were diagnosed with CbH, classified as punctate in 43 infants (71.3%). Hypotension requiring treatment with inotropes was an independent risk factor for CbH (OR 3.07, 95% CI 1.15-8.21, P = .02) and was associated with larger CbH volume (0.36 log mm3, 95% CI 0.17-0.54, P < .001). CONCLUSIONS Hypotension treated with inotropes is shown to be an independent risk factor for the presence of CbH as well as for larger CbH volume. These results reinforce the importance of hemodynamics stability, especially an appropriate management of hypotension to prevent CbH and therefore improve neurodevelopmental outcomes among infants born very preterm.
Collapse
Affiliation(s)
- Marta Ybarra
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Neonatology, La Paz University Hospital, Madrid, Spain.
| | - Thiviya Selvanathan
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ting Guo
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Helen M Branson
- Department of Diagnostic Imaging and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Linh G Ly
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne R Synnes
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Edmond Kelly
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ruth E Grunau
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Steven P Miller
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Emily W Y Tam
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Muehlbacher T, Dudink J, Steggerda SJ. Cerebellar Development and the Burden of Prematurity. CEREBELLUM (LONDON, ENGLAND) 2025; 24:39. [PMID: 39885037 PMCID: PMC11782465 DOI: 10.1007/s12311-025-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The role of the cerebellum in the neurodevelopmental outcomes of preterm infants has often been neglected. However, accumulating evidence indicates that normal cerebellar development is disrupted by prematurity-associated complications causing cerebellar injury and by prematurity itself. This hampers not only the normal development of motor skills and gait, but also cognitive, language, and behavioral development, collectively referred to as "developmental cognitive affective syndrome." In this comprehensive narrative review, we provide the results of an extensive literature search in PubMed and Embase to summarize recent evidence on altered cerebellar development in premature infants, focusing on neuroimaging findings, its causative factors and its impact on long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tobias Muehlbacher
- Department of Neonatology, Newborn Research Zurich, University Hospital Zurich, Zurich, Switzerland.
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylke J Steggerda
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
3
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
4
|
Russ JB, Ostrem BEL. Acquired Brain Injuries Across the Perinatal Spectrum: Pathophysiology and Emerging Therapies. Pediatr Neurol 2023; 148:206-214. [PMID: 37625929 DOI: 10.1016/j.pediatrneurol.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The development of the central nervous system can be directly disrupted by a variety of acquired factors, including infectious, inflammatory, hypoxic-ischemic, and toxic insults. Influences external to the fetus also impact neurodevelopment, including placental health, maternal comorbidities, adverse experiences, environmental exposures, and social determinants of health. Acquired perinatal brain insults tend to affect the developing brain in a stage-specific manner that reflects the susceptible cell types, developmental processes, and risk factors present at the time of the insult. In this review, we discuss the pathophysiology, neurodevelopmental outcomes, and management of common acquired perinatal brain conditions. In the fetal brain, we divide insults based on trimester, and in the postnatal brain, we focus on common pathologies that have a presentation dependent on gestational age at birth: white matter injury and germinal matrix hemorrhage/intraventricular hemorrhage in preterm infants and hypoxic-ischemic encephalopathy in term infants. Although specific treatments for fetal and newborn brain disorders are currently limited, we emphasize therapies in preclinical or early clinical phases of the development pipeline. The growing number of novel cell type- and stage-specific emerging therapies suggests that in the near future we may have a dramatically improved ability to treat acquired perinatal brain disorders and to mitigate the associated neurodevelopmental consequences.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Bridget E L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
5
|
Lear BA, Lear CA, Dhillon SK, Davidson JO, Gunn AJ, Bennet L. Evolution of grey matter injury over 21 days after hypoxia-ischaemia in preterm fetal sheep. Exp Neurol 2023; 363:114376. [PMID: 36889575 DOI: 10.1016/j.expneurol.2023.114376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/05/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Reduced grey matter volume in preterm infants is associated with later disability, but its time course and relationship with white matter injury are not well understood. We recently showed that moderate-severe hypoxia-ischaemia (HI) in preterm fetal sheep led to severe cystic injury 2-3 weeks later. In the same cohort we now show profound hippocampal neuronal loss from 3 days after HI. By contrast, reduction in cortical area and perimeter developed much more slowly, with maximum reduction at day 21. There was transient upregulation of cleaved caspase-3-positive apoptosis in the cortex at day 3 but no change in neuronal density or macroscopic injury of the cortex. Both microglia and astrocytes were transiently upregulated in the grey matter. EEG power was initially profoundly suppressed but partially recovered by 21 days of recovery, and final power was correlated with white matter area (p < 0.001, r2 = 0.75, F = 24.19), cortical area (p = 0.004, r2 = 0.44, F = 11.90) and hippocampi area (p = 0.049, r2 = 0.23, F = 4.58). In conclusion, the present study suggests that in preterm fetal sheep, hippocampal injury is established within a few days of acute HI, but impaired cortical growth develops slowly, in a similar time course to severe white matter injury.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Leibovitz Z, Lerman-Sagie T, Haddad L. Fetal Brain Development: Regulating Processes and Related Malformations. Life (Basel) 2022; 12:life12060809. [PMID: 35743840 PMCID: PMC9224903 DOI: 10.3390/life12060809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
This paper describes the contemporary state of knowledge regarding processes that regulate normal development of the embryonic–fetal central nervous system (CNS). The processes are described according to the developmental timetable: dorsal induction, ventral induction, neurogenesis, neuronal migration, post-migration neuronal development, and cortical organization. We review the current literature on CNS malformations associated with these regulating processes. We specifically address neural tube defects, holoprosencephaly, malformations of cortical development (including microcephaly, megalencephaly, lissencephaly, cobblestone malformations, gray matter heterotopia, and polymicrogyria), disorders of the corpus callosum, and posterior fossa malformations. Fetal ventriculomegaly, which frequently accompanies these disorders, is also reviewed. Each malformation is described with reference to the etiology, genetic causes, prenatal sonographic imaging, associated anomalies, differential diagnosis, complimentary diagnostic studies, clinical interventions, neurodevelopmental outcome, and life quality.
Collapse
Affiliation(s)
- Zvi Leibovitz
- Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Fetal Neurology Clinic, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5822012, Israel;
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center, Rappaport Faculty of Medicine, The Technion, Haifa 31048, Israel;
- Correspondence:
| | - Tally Lerman-Sagie
- Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Fetal Neurology Clinic, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5822012, Israel;
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5822012, Israel
| | - Leila Haddad
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center, Rappaport Faculty of Medicine, The Technion, Haifa 31048, Israel;
| |
Collapse
|