1
|
3D-Printed EVA Devices for Antiviral Delivery and Herpes Virus Control in Genital Infection. Viruses 2022; 14:v14112501. [PMID: 36423110 PMCID: PMC9696101 DOI: 10.3390/v14112501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes viruses are widespread in the human population and can cause many different diseases. Genital herpes is common and can increase the risk of HIV infection and neonatal herpes. Acyclovir is the most used drug for herpes treatment; however, it presents some disadvantages due to its poor oral bioavailability. In this study, some ethylene vinyl acetate devices with different acyclovir amounts (0, 10, and 20 wt.%) were manufactured by fused filament fabrication in two different geometries, an intrauterine device, and an intravaginal ring. Thermal analyses suggested that the crystallinity of EVA decreased up to 8% for the sample loaded with 20 wt.% of acyclovir. DSC, SEM, and FTIR analyses confirmed that the drug was successfully incorporated into the EVA matrix. Moreover, the drug release tests suggested a burst release during the first 24 h followed by a slower release rate sustained up to 80 days. Biological assays showed the biocompatibility of the EVA/ACV device, as well as a 99% reduction in vitro replication of HSV-1. Finally, the EVA presented a suitable performance for 3D printing manufacturing that can contribute to developing personalized solutions for long-term herpes treatment.
Collapse
|
2
|
van Neerven SM, Smit WL, van Driel MS, Kakkar V, de Groot NE, Nijman LE, Elbers CC, Léveillé N, Heijmans J, Vermeulen L. Intestinal Apc-inactivation induces HSP25 dependency. EMBO Mol Med 2022; 14:e16194. [PMID: 36321561 PMCID: PMC9727927 DOI: 10.15252/emmm.202216194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022] Open
Abstract
The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored. In order to investigate the role of molecular chaperones in driving CRC initiation, we captured the transcriptomic profiles of murine wild type and Apc-mutant organoids during active transformation. We discovered a strong transcriptional upregulation of Hspb1, which encodes small heat shock protein 25 (HSP25). We reveal an indispensable role for HSP25 in facilitating Apc-driven transformation, using both in vitro organoid cultures and mouse models, and demonstrate that chemical inhibition of HSP25 using brivudine reduces the development of premalignant adenomas. These findings uncover a hitherto unknown vulnerability in intestinal transformation that could be exploited for the development of chemopreventive strategies in high-risk individuals.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Wouter L Smit
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Milou S van Driel
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Vaishali Kakkar
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Nina E de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Clara C Elbers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Nicolas Léveillé
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Jarom Heijmans
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Department of Internal MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| |
Collapse
|