1
|
Toledo-Hernández E, Torres-Quíntero MC, Mancilla-Dorantes I, Sotelo-Leyva C, Delgado-Núñez EJ, Hernández-Velázquez VM, Dunstand-Guzmán E, Salinas-Sánchez DO, Peña-Chora G. Entomopathogenic Bacteria Species and Toxins Targeting Aphids (Hemiptera: Aphididae): A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:943. [PMID: 40265885 PMCID: PMC11944987 DOI: 10.3390/plants14060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aphids (Hemiptera: Aphididae) are cosmopolitan generalist pests of many agricultural crops. Their ability to reproduce rapidly through parthenogenesis allows them to quickly reach population sizes that are difficult to control. Their damage potential is further exacerbated when they act as vectors for plant pathogens, causing diseases in plants. Aphids are typically managed through the widespread use of insecticides, increasing the likelihood of short-term insecticide resistance. However, for the past few decades, entomopathogenic bacteria have been used as an alternative management strategy. Entomopathogenic bacteria have demonstrated their effectiveness for biologically suppressing insect pests, including aphids. In addition to identifying bacterial species that are pathogenic to aphids, research has been conducted on toxins such as Cry, Cyt, Vip, recombinant proteins, and other secondary metabolites with insecticidal activity. Most studies on aphids have been conducted in vitro, exposing them to an artificial diet contaminated with entomopathogenic bacteria or bacterial metabolites for periods ranging from 24 to 96 h. The discovery of new bacterial species with insecticidal potential, as well as the possibility of biotechnological applications through the genetic improvement of crops, will provide more alternatives for managing these agricultural pests in the future. This will also help address challenges related to field application.
Collapse
Affiliation(s)
- Erubiel Toledo-Hernández
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - Mary Carmen Torres-Quíntero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Ilse Mancilla-Dorantes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - Edgar Jesús Delgado-Núñez
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma Guerrero, Iguala de la Independencia C.P. 40020, Guerrero, Mexico;
| | - Víctor Manuel Hernández-Velázquez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Emmanuel Dunstand-Guzmán
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - David Osvaldo Salinas-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Guadalupe Peña-Chora
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| |
Collapse
|
2
|
Pittaluga JR, Birnberg-Weiss F, Serafino A, Castro JE, Castillo LA, Martire-Greco D, Barrionuevo P, Fernández GC, Landoni VI. The RNA from Pseudomonas aeruginosa Reduces Neutrophil Responses Favoring Bacterial Survival. J Innate Immun 2024; 16:489-500. [PMID: 39293427 PMCID: PMC11521516 DOI: 10.1159/000541414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
INTRODUCTION Epithelial and endothelial cells modulate innate immune responses in the lung, including the arrival of neutrophils (PMN), which are crucial cells for the antibacterial host defense. Cells are exposed to prokaryotic RNA (pRNA) during bacterial infections and different pRNA may promote or attenuate the inflammatory response on different immune cells. Pseudomonas aeruginosa (PAE) can cause severe pneumonia and has several immune-evading mechanisms. The aim of this study was to determine the effects of the RNA from PAE (RNAPAE) on lung epithelial, endothelial cells, and PMN, and its impact on bacterial elimination. METHODS Purified total RNAPAE was used as a stimulus on a human lung epithelial cell line (Calu-6), human microvascular endothelial cell line HMEC-1 and isolated healthy human PMN. Activation and cytokine secretion were evaluated. In addition, PMN elimination of live ECO or PAE was determined in the presence of RNAPAE. RESULTS We found that RNAPAE either induced a pro-inflammatory response on Calu-6 and HMEC-1 or PMN. Pre-stimulation of PMN with RNAPAE diminished activation and chemotaxis induced by live bacteria. Moreover, we found that RNAPAE reduced phagocytosis of live ECO. Finally, we also found that non-degraded fragments of small RNA (<200 bp) were responsible for the PMN microbicidal attenuation during PAE elimination. CONCLUSION Our results indicated that short fragments of RNAPAE diminished the immune response of PMN favoring bacterial survival.
Collapse
Affiliation(s)
- Jose R Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Serafino
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Joselyn E Castro
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Rahbé E, Glaser P, Opatowski L. Modeling the transmission of antibiotic-resistant Enterobacterales in the community: A systematic review. Epidemics 2024; 48:100783. [PMID: 38944024 DOI: 10.1016/j.epidem.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Antibiotic-resistant Enterobacterales (ARE) are a public health threat worldwide. Dissemination of these opportunistic pathogens has been largely studied in hospitals. Despite high prevalence of asymptomatic colonization in the community in some regions of the world, less is known about ARE acquisition and spread in this setting. As explaining the community ARE dynamics has not been straightforward, mathematical models can be key to explore underlying phenomena and further evaluate the impact of interventions to curb ARE circulation outside of hospitals. METHODS We conducted a systematic review of mathematical modeling studies focusing on the transmission of AR-E in the community, excluding models only specific to hospitals. We extracted model features (population, setting), formalism (compartmental, individual-based), biological hypotheses (transmission, infection, antibiotic impact, resistant strain specificities) and main findings. We discussed additional mechanisms to be considered, open scientific questions, and most pressing data needs. RESULTS We identified 18 modeling studies focusing on the human transmission of ARE in the community (n=11) or in both community and hospital (n=7). Models aimed at (i) understanding mechanisms driving resistance dynamics; (ii) identifying and quantifying transmission routes; or (iii) evaluating public health interventions to reduce resistance. To overcome the difficulty of reproducing observed ARE dynamics in the community using the classical two-strains competition model, studies proposed to include mechanisms such as within-host strain competition or a strong host population structure. Studies inferring model parameters from longitudinal carriage data were mostly based on models considering the ARE strain only. They showed differences in ARE carriage duration depending on the acquisition mode: returning travelers have a significantly shorter carriage duration than discharged hospitalized patient or healthy individuals. Interestingly, predictions across models regarding the success of public health interventions to reduce ARE rates depended on pathogens, settings, and antibiotic resistance mechanisms. For E. coli, reducing person-to-person transmission in the community had a stronger effect than reducing antibiotic use in the community. For Klebsiella pneumoniae, reducing antibiotic use in hospitals was more efficient than reducing community use. CONCLUSIONS This study raises the limited number of modeling studies specifically addressing the transmission of ARE in the community. It highlights the need for model development and community-based data collection especially in low- and middle-income countries to better understand acquisition routes and their relative contribution to observed ARE levels. Such modeling will be critical to correctly design and evaluate public health interventions to control ARE transmission in the community and further reduce the associated infection burden.
Collapse
Affiliation(s)
- Eve Rahbé
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antimicrobials Evasion research unit, Paris, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology research team, Montigny-Le-Bretonneux, France.
| | - Philippe Glaser
- Institut Pasteur, Ecology and Evolution of Antibiotic Resistance research unit, Université Paris Cité, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antimicrobials Evasion research unit, Paris, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology research team, Montigny-Le-Bretonneux, France.
| |
Collapse
|
4
|
Romyasamit C, Sornsenee P, Kawila S, Saengsuwan P. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: insights from a tertiary hospital in Southern Thailand. Microbiol Spectr 2024; 12:e0021324. [PMID: 38809095 PMCID: PMC11218496 DOI: 10.1128/spectrum.00213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Broad-spectrum ampicillin-resistant and third-generation cephalosporin-resistant Enterobacteriaceae, particularly Escherichia coli and Klebsiella pneumoniae that have pathological features in humans, have become a global concern. This study aimed to investigate the prevalence, antimicrobial susceptibility, and molecular genetic features of extended-spectrum beta-lactamase (ESBL)-producing E. coli and K. pneumoniae isolates in Southern Thailand. Between January and August 2021, samples (n = 199) were collected from a tertiary care hospital in Southern Thailand. ESBL and AmpC-lactamase genes were identified using multiplex polymerase chain reaction (PCR). The genetic relationship between ESBL-producing E. coli and K. pneumoniae was determined using the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction. ESBL-producing E. coli and K. pneumoniae isolates were mostly collected from catheter urine samples of infected female patients. The ESBL production prevalence was highest in the medical wards (n = 75, 37.7%), followed by that in surgical wards (n = 64, 32.2%) and operating rooms (n = 19, 9.5%). Antimicrobial susceptibility analysis revealed that all isolates were resistant to ampicillin, cefotaxime, ceftazidime, ceftriaxone, and cefuroxime; 79.4% were resistant to ciprofloxacin; and 64.3% were resistant to trimethoprim-sulfamethoxazole. In ESBL-producing K. pneumoniae and E. coli, blaTEM (n = 57, 72.2%) and blaCTX-M (n = 61, 50.8%) genes were prominent; however, no blaVEB, blaGES, or blaPER were found in any of these isolates. Furthermore, only ESBL-producing K. pneumoniae had co-harbored blaTEM and blaSHV genes at 11.6%. The ERIC-PCR pattern of multidrug-resistant ESBL-producing strains demonstrated that the isolates were clonally related (95%). Notably, the presence of multidrug-resistant and extremely resistant ESBL producers was 83.4% and 16.6%, respectively. This study highlights the presence of blaTEM, blaCTX-M, and co-harbored genes in ESBL-producing bacterial isolates from hospitalized patients, which are associated with considerable resistance to beta-lactamase and third-generation cephalosporins. IMPORTANCE We advocate for evidence-based guidelines and antimicrobial stewardship programs to encourage rational and appropriate antibiotic use, ultimately reducing the selection pressure for drug-resistant bacteria and lowering the likelihood of ESBL-producing bacterial infections.
Collapse
Affiliation(s)
- Chonticha Romyasamit
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phoomjai Sornsenee
- Department of Family Medicine and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soontara Kawila
- Microbiology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phanvasri Saengsuwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
5
|
Gonçalves T, Marques AT, Manageiro V, Tanoeiro L, Vital JS, Duarte A, Vítor JMB, Caniça M, Gaspar MM, Vale FF. Antimicrobial activity of prophage endolysins against critical Enterobacteriaceae antibiotic-resistant bacteria. Int J Pharm 2024; 651:123758. [PMID: 38160991 DOI: 10.1016/j.ijpharm.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Enterobacteriaceae species are part of the 2017 World Health Organization antibiotic-resistant priority pathogens list for development of novel medicines. Multidrug-resistant Klebsiella pneumoniae is an increasing threat to public health and has become a relevant human pathogen involved in life-threatening infections. Phage therapy involves the use of phages or their lytic endolysins as bioagents for the treatment of bacterial infectious diseases. Gram-negative bacteria have an outer membrane, making difficult the access of endolysins to the peptidoglycan. Here, three endolysins from prophages infecting three distinct Enterobacterales species, Kp2948-Lys from K. pneumoniae, Ps3418-Lys from Providencia stuartii, and Kaer26608-Lys from Klebsiella aerogenes, were purified and exhibited antibacterial activity against their specific bacterium species verified by zymogram assays. These three endolysins were successfully associated to liposomes composed of dimyristoyl phosphatidyl choline (DMPC), dioleoyl phosphatidyl ethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) at a molar ratio (4:4:2), with an encapsulation efficiency ranging from 24 to 27%. Endolysins encapsulated in liposomes resulted in higher antibacterial activity compared to the respective endolysin in the free form, suggesting that the liposome-mediated delivery system enhances fusion with outer membrane and delivery of endolysins to the target peptidoglycan. Obtained results suggest that Kp2948-Lys appears to be specific for K. pneumoniae, while Ps3418-Lys and Kaer26608-Lys appear to have a broader antibacterial spectrum. Endolysins incorporated in liposomes constitute a promising weapon, applicable in the several dimensions (human, animals and environment) of the One Health approach, against multidrug-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Tiago Gonçalves
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Andreia T Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Luis Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Joana S Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - Jorge M B Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
6
|
Shajiei A, Liu L, Seinen J, Dieperink W, Hammerschmidt S, Maarten van Dijl J, Harmsen HJ. Specific associations between fungi and bacteria in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients. Virulence 2022; 13:2022-2031. [PMID: 36384379 PMCID: PMC9673952 DOI: 10.1080/21505594.2022.2146568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detection of fungi in the human respiratory tract may represent contamination, colonization or a respiratory infection. To develop effective management strategies, a more accurate and comprehensive understanding of the lung fungal microbiome is required. Therefore, the objective of the present study was to define the "mycobiome" of mechanically ventilated patients admitted to an intensive care unit (ICU) using broncho-alveolar aspirate ("sputum") samples and correlate this with clinical parameters and the bacterial microbiota. To this end, the mycobiome of 33 sputum samples was analyzed by Internal Transcribed Spacer2 (ITS2) amplicon sequencing of the ribosomal operons. The results show that in the investigated sputa of mechanically ventilated patients Candida spp. were most frequently detected, independent of pneumonia or antimicrobial therapy. The presence of Candida excluded in most cases the presence of Malassezia, which was the second most-frequently encountered fungus. Moreover, a hierarchical clustering of the sequence data indicated a patient-specific mycobiome. Fungi detected by culturing (Candida and Aspergillus) were also detected through ITS2 sequencing, but other yeasts and fungi were only detectable by sequencing. While Candida showed no correlations with identified bacterial groups, the presence of Malassezia and Rhodotorula correlated with oral bacteria associated with periodontal disease. Likewise, Cladosporium correlated with other oral bacteria, whereas Saccharomyces correlated more specifically with dental plaque bacteria and Alternaria with the nasal-throat-resident bacteria Neisseria, Haemophilus and Moraxella. In conclusion, ITS2 sequencing of sputum samples uncovered patient-specific lung mycobiomes, which were only partially detectable by culturing, and which could be correlated to specific nasal-oral-pharyngeal niches.
Collapse
Affiliation(s)
- Arezoo Shajiei
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lei Liu
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Seinen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Willem Dieperink
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J.M. Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,CONTACT Hermie J.M. Harmsen
| |
Collapse
|
7
|
Mateo EM, Jiménez M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics (Basel) 2022; 11:antibiotics11091205. [PMID: 36139984 PMCID: PMC9495113 DOI: 10.3390/antibiotics11091205] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The present review focuses on the potential use of silver nanoparticles in the therapy of diseases caused by antibiotic-resistant bacteria. Such bacteria are known as “superbugs”, and the most concerning species are Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus (methicillin and vancomycin-resistant), and some Enterobacteriaceae. According to the World Health Organization (WHO), there is an urgent need for new treatments against these “superbugs”. One of the possible approaches in the treatment of these species is the use of antibacterial nanoparticles. After a short overview of nanoparticle usage, mechanisms of action, and methods of synthesis of nanoparticles, emphasis has been placed on the use of silver nanoparticles (AgNPs) to combat the most relevant emerging resistant bacteria. The toxicological aspects of the AgNPs, both in vitro using cell cultures and in vivo have been reviewed. It was found that toxic activity of AgNPs is dependent on dose, size, shape, and electrical charge. The mechanism of action of AgNPs involves interactions at various levels such as plasma membrane, DNA replication, inactivation of protein/enzymes necessary, and formation of reactive oxygen species (ROS) leading to cell death. Researchers do not always agree in their conclusions on the topic and more work is needed in this field before AgNPs can be effectively applied in clinical therapy to combat multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Eva M. Mateo
- Department of Microbiology and Ecology, Faculty of Medicine and Odontology, Universitat de Valencia, E-46010 Valencia, Spain
- Correspondence:
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, Faculty of Biological Sciences, Universitat de Valencia, E-46100 Valencia, Spain
| |
Collapse
|
8
|
Li Z, Jiang L, Wei L, Ohno T, Syaputri Y, Horie M, Iwahashi H. Controlling the microbial composition during the fermentation of Ishizuchi-kurocha. Biosci Biotechnol Biochem 2021; 86:117-124. [PMID: 34669923 DOI: 10.1093/bbb/zbab184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 11/12/2022]
Abstract
Ishizuchi-kurocha is a popular postfermented tea in Japan. It is performed by domestic and natural fermentation relied on microorganisms derived from tea leaves or the environment of the manufacturing. Ishizuchi-kurocha undergoes aerobic fermentation of fungi first, then second fermented by anaerobic fermentation of lactic acid bacteria during natural fermentation processing. Aspergillus niger that produces mycotoxin is included in natural fermentation. This research aimed to build a novel fermentation method of Ishizuchi-kurocha by adding industrial koji fungi products and laboratory-cultivated Lactobacillus plantarum (Lactiplantibacillus plantarum) artificially. Thus, safety and quality of tea products could be controlled simply. We found artificial fermentation of Ishizuchi-kurocha could get high lactic acid production within 8 days. Final products only consisted of genus Aspergillus and genus Lactobacillus, while harmful Aspergillus niger was not found. However, artificial fermentation methods also decreased the content of polyphenols when compared with commercial tea.
Collapse
Affiliation(s)
- Zuoqian Li
- Graduate School of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu 501-1193, Japan
| | - Lei Jiang
- United Graduate School of Agricultural Science, Gifu University, Tokai National Higher Education and Research System, Gifu 501-1193, Japan
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Lingdong Wei
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Tomoki Ohno
- Graduate School of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu 501-1193, Japan
| | - Yolani Syaputri
- United Graduate School of Agricultural Science, Gifu University, Tokai National Higher Education and Research System, Gifu 501-1193, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung - Sumedang Km-21, 45361, Jatinangor, Sumedang West Java, Indonesia
| | - Masanori Horie
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Hitoshi Iwahashi
- Laboratory of Applied Microbiology, Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu 501-1193, Japan
| |
Collapse
|
9
|
Zhang R, Ellis D, Walker AR, Datta S. Unraveling City-Specific Microbial Signatures and Identifying Sample Origins for the Data From CAMDA 2020 Metagenomic Geolocation Challenge. Front Genet 2021; 12:659650. [PMID: 34421984 PMCID: PMC8375386 DOI: 10.3389/fgene.2021.659650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
The composition of microbial communities has been known to be location-specific. Investigating the microbial composition across different cities enables us to unravel city-specific microbial signatures and further predict the origin of unknown samples. As part of the CAMDA 2020 Metagenomic Geolocation Challenge, MetaSUB provided the whole genome shotgun (WGS) metagenomics data from samples across 28 cities along with non-microbial city data for 23 of these cities. In our solution to this challenge, we implemented feature selection, normalization, clustering and three methods of machine learning to classify the cities based on their microbial compositions. Of the three methods, multilayer perceptron obtained the best performance with an error rate of 19.60% based on whether the correct city received the highest or second highest number of votes for the test data contained in the main dataset. We then trained the model to predict the origins of samples from the mystery dataset by including these samples with the additional group label of "mystery." The mystery dataset compromised of samples collected from a subset of the cities in the main dataset as well as samples collected from new cities. For samples from cities that belonged to the main dataset, error rates ranged from 18.18 to 72.7%. For samples from new cities that did not belong to the main dataset, 57.7% of the test samples could be correctly labeled as "mystery" samples. Furthermore, we also predicted some of the non-microbial features for the mystery samples from the cities that did not belong to main dataset to draw inferences and narrow the range of the possible sample origins using a multi-output multilayer perceptron algorithm.
Collapse
Affiliation(s)
- Runzhi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Dorothy Ellis
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Yuan Z, Tian Y, He F, Zhou H. Endophytes from Ginkgo biloba and their secondary metabolites. Chin Med 2019; 14:51. [PMID: 31728156 PMCID: PMC6842171 DOI: 10.1186/s13020-019-0271-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/23/2019] [Indexed: 01/02/2023] Open
Abstract
Ginkgo biloba is a medicinal plant which contains abundant endophytes and various secondary metabolites. According to the literary about the information of endophytics from Ginkgo biloba, Chaetomium, Aspergillus, Alternaria, Penicillium and Charobacter were isolated from the root, stem, leaf, seed and bark of G. biloba. The endophytics could produce lots of phytochemicals like flavonoids, terpenoids, and other compounds. These compounds have antibacteria, antioxidation, anticardiovascular, anticancer, antimicrobial and some novel functions. This paper set forth the development of active extracts isolated from endophytes of Ginkgo biloba and will help to improve the resources of Ginkgo biloba to be used in a broader field.
Collapse
Affiliation(s)
- Zhihui Yuan
- 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China.,3College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199 China
| | - Yun Tian
- 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Fulin He
- Hunan Provincial Engineering Research Center for Ginkgo Biloba, Yongzhou, 425199 China.,3College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199 China
| | - Haiyan Zhou
- 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|