1
|
Mathimaran A, Nagarajan H, Mathimaran A, Huang YC, Chen CJ, Vetrivel U, Jeyaraman J. Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches. Int J Biol Macromol 2024; 276:133977. [PMID: 39029846 DOI: 10.1016/j.ijbiomac.2024.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.
Collapse
Affiliation(s)
- Amala Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ahila Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
2
|
N’da KM, Gbati OB, Dahourou LD, Behou NES, Traore A, Kungu J. Pigs' management practices and exposure to Trichinella spp. in pigs and warthogs in the northern area of Senegal. Vet World 2022; 15:2253-2258. [PMID: 36341070 PMCID: PMC9631380 DOI: 10.14202/vetworld.2022.2253-2258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Trichinellosis is a neglected and emerging foodborne zoonosis in Africa. Trichinella infection occurs through the consumption of raw or undercooked infected meat and meat products. This study aimed to assess pigs' management practices and determine the exposure of pigs and warthogs to Trichinella spp. in the northern area of Senegal. Materials and Methods Surveys and observations were carried out among 40 pig farmers to assess husbandry practices regarding Trichinella spp. life cycle. In addition, 201 pig meat juices and 83 warthog meat juices were extracted and tested for anti-Trichinella antibodies by indirect enzyme-linked immunosorbent assay. Results Most (97%) of farms practiced a traditional farming system with free-ranging of pigs in 85% of farms. Farms had local pig breed without housing and supplementary feeding. Some farmers (27.5%) used slaughter waste to feed pigs and farmers were not aware that free-range farming is a source of infection to Trichinella infection. They were also unaware that some pig diseases could be transmitted to humans. The seroprevalence of Trichinella infection was 10.9% (95% confidence interval [CI]: 6.6-15.2%) in pigs and 10.8% (95% CI: 4.16-17.52%) in warthogs with significantly higher seroprevalence in male (22.2%: 95% CI: 6.6-37.8%) compared to female (9.2%; 95% CI: 4.9-13.5%) (p < 0.05). Conclusion The confirmation of exposure to Trichinella spp. in this area in pigs and warthogs shows a significant risk of transmission of this disease to humans if the farming conditions and the health surveillance system are not respected. However, control measures are needed to reduce any risk of transmission of Trichinella infection to humans.
Collapse
Affiliation(s)
- Kacou Martial N’da
- Parasitology and Mycology Laboratory, Public Health - Environment Department, Inter-State School of Veterinary Science and Medicine - EISMV, Dakar, Senegal
| | - Oubri Bassa Gbati
- Parasitology and Mycology Laboratory, Public Health - Environment Department, Inter-State School of Veterinary Science and Medicine - EISMV, Dakar, Senegal
| | - Laibané Dieudonné Dahourou
- Department of Livestock Breeding, Rural Development and Environmental Sciences Institute (ISEDR), University of Dedougou, Dedougou, Burkina Faso
- Laboratory of Animal Health and Biology, Department of Animal Productions, Environment and Agricultural Research Institute (INERA), Ouagadougou, Burkina Faso
| | - N’guessan Ezéchiel Schadrac Behou
- Parasitology and Mycology Laboratory, Public Health - Environment Department, Inter-State School of Veterinary Science and Medicine - EISMV, Dakar, Senegal
| | - Amadou Traore
- Laboratory of Animal Health and Biology, Department of Animal Productions, Environment and Agricultural Research Institute (INERA), Ouagadougou, Burkina Faso
| | - Joseph Kungu
- Department of Biosecurity Ecosystems and Veterinary Public Health, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
4
|
Characterization of a new type of neuronal 5-HT G- protein coupled receptor in the cestode nervous system. PLoS One 2021; 16:e0259104. [PMID: 34762657 PMCID: PMC8584985 DOI: 10.1371/journal.pone.0259104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Cestodes are platyhelminth parasites with a wide range of hosts that cause neglected diseases. Neurotransmitter signaling is of critical importance for these parasites which lack circulatory, respiratory and digestive systems. For example, serotonin (5-HT) and serotonergic G-protein coupled receptors (5-HT GPCRs) play major roles in cestode motility, development and reproduction. In previous work, we deorphanized a group of 5-HT7 type GPCRs from cestodes. However, little is known about another type of 5-HT GPCR, the 5-HT1 clade, which has been studied in several invertebrate phyla but not in platyhelminthes. Three putative 5-HT GPCRs from Echinococcus canadensis, Mesocestoides vogae (syn. M. corti) and Hymenolepis microstoma were cloned, sequenced and bioinformatically analyzed. Evidence grouped these new sequences within the 5-HT1 clade of GPCRs but differences in highly conserved GPCR motifs were observed. Transcriptomic analysis, heterologous expression and immunolocalization studies were performed to characterize the E. canadensis receptor, called Eca-5-HT1a. Functional heterologous expression studies showed that Eca-5-HT1a is highly specific for serotonin. 5-Methoxytryptamine and α-methylserotonin, both known 5-HT GPCR agonists, give stimulatory responses whereas methysergide, a known 5-HT GPCR ligand, give an antagonist response in Eca-5-HT1a. Mutants obtained by the substitution of key predicted residues resulted in severe impairment of receptor activity, confirming that indeed, these residues have important roles in receptor function. Immunolocalization studies on the protoscolex stage from E. canadensis, showed that Eca-5-HT1a is localized in branched fibers which correspond to the nervous system of the parasite. The patterns of immunoreactive fibers for Eca-5-HT1a and for serotonin were intimately intertwined but not identical, suggesting that they are two separate groups of fibers. These data provide the first functional, pharmacological and localization report of a serotonergic receptor that putatively belongs to the 5-HT1 type of GPCRs in cestodes. The serotonergic GPCR characterized here may represent a new target for antiparasitic intervention.
Collapse
|
5
|
Naidoo P, Ghazi T, Chuturgoon AA, Naidoo RN, Ramsuran V, Mpaka-Mbatha MN, Bhengu KN, Nembe N, Duma Z, Pillay R, Singh R, Mkhize-Kwitshana ZL. SARS-CoV-2 and helminth co-infections, and environmental pollution exposure: An epidemiological and immunological perspective. ENVIRONMENT INTERNATIONAL 2021; 156:106695. [PMID: 34171587 PMCID: PMC8205275 DOI: 10.1016/j.envint.2021.106695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 05/17/2023]
Abstract
Soil-transmitted helminths infect billions of people globally, particularly those residing in low- and middle-income regions with poor environmental sanitation and high levels of air and water pollution. Helminths display potent immunomodulatory activity by activating T helper type 2 (Th2) anti-inflammatory and Th3 regulatory immune responses. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that causes Coronavirus disease 2019 (COVID-19), can exacerbate Th1/Th17 pro-inflammatory cytokine production in humans, leading to a cytokine storm. Air pollutants (particulate matter, oxygen radicals, hydrocarbons and volatile organic compounds) and water pollutants (metals and organic chemicals) can also intensify Th1/Th17 immune response and could exacerbate SARS-CoV-2 related respiratory distress and failure. The present review focused on the epidemiology of SARS-CoV-2, helminths and fine particulate matter 2.5 µm or less in diameter (PM2.5) air pollution exposure in helminth endemic regions, the possible immunomodulatory activity of helminths against SARS-CoV-2 hyper-inflammatory immune response, and whether air and water pollutants can further exacerbate SARS-CoV-2 related cytokine storm and in the process hinder helminths immunomodulatory functionality. Helminth Th2/Th3 immune response is associated with reductions in lung inflammation and damage, and decreased expression levels of angiotensin-converting enzyme 2 (ACE2) receptors (SARS-CoV-2 uses the ACE2 receptors to infect cells and associated with extensive lung damage). However, air pollutants are associated with overexpression of ACE2 receptors in the epithelial cell surface of the respiratory tract and exhaustion of Th2 immune response. Helminth-induced immunosuppression activity reduces vaccination efficacy, and diminishes vital Th1 cytokine production immune responses that are crucial for combating early stage infections. This could be reversed by continuous air pollution exposure which is known to intensify Th1 pro-inflammatory cytokine production to a point where the immunosuppressive activities of helminths could be hindered. Again, suppressed activities of helminths can also be disadvantageous against SARS-CoV-2 inflammatory response. This "yin and yang" approach seems complex and requires more understanding. Further studies are warranted in a cohort of SARS-CoV-2 infected individuals residing in helminths and air pollution endemic regions to offer more insights, and to impact mass periodic deworming programmes and environmental health policies.
Collapse
Affiliation(s)
- Pragalathan Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa.
| | - Terisha Ghazi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Anil A Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Miranda N Mpaka-Mbatha
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Khethiwe N Bhengu
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Nomzamo Nembe
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Zamathombeni Duma
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Roxanne Pillay
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|