1
|
Hong MK, Ding DC. Early Diagnosis of Ovarian Cancer: A Comprehensive Review of the Advances, Challenges, and Future Directions. Diagnostics (Basel) 2025; 15:406. [PMID: 40002556 PMCID: PMC11854769 DOI: 10.3390/diagnostics15040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Ovarian cancer (OC), the seventh most common cancer in women and the most lethal gynecological malignancy, is a significant global health challenge, with >324,000 new cases and >200,000 deaths being reported annually. OC is characterized by late-stage diagnosis, a poor prognosis, and 5-year survival rates ranging from 93% (early stage) to 20% (advanced stage). Despite advances in genomics and proteomics, effective early-stage diagnostic tools and population-wide screening strategies remain elusive, contributing to high mortality rates. The complex pathogenesis of OC involves diverse histological subtypes and genetic predispositions, including BRCA1/2 mutations; notably, a considerable proportion of OC cases have a hereditary component. Current diagnostic modalities, including imaging techniques (transvaginal ultrasound, computed/positron emission tomography, and magnetic resonance imaging) and biomarkers (CA-125 and human epididymis protein 4), with varying degrees of sensitivity and specificity, have limited efficacy in detecting early-stage OC. Emerging technologies, such as liquid biopsy, multiomics, and artificial intelligence (AI)-assisted diagnostics, may enhance early detection. Liquid biopsies using circulating tumor DNA and microRNAs are popular minimally invasive diagnostic tools. Integrated multiomics has advanced biomarker discovery. AI algorithms have improved imaging interpretation and risk prediction. Novel screening methods including organoids and multiplex panels are being explored to overcome current diagnostic limitations. This review highlights the critical need for continued research and innovation to enhance early diagnosis, reduce mortality, and improve patient outcomes in OC and posits personalized medicine, integrated emerging technologies, and targeted global initiatives and collaborative efforts, which address care access disparities and promote cost-effective, scalable screening strategies, as potential tools to combat OC.
Collapse
Affiliation(s)
- Mun-Kun Hong
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
2
|
Della Corte L, Russo G, Pepe F, Pisapia P, Dell'Aquila M, Malapelle U, Troncone G, Bifulco G, Giampaolino P. The role of liquid biopsy in epithelial ovarian cancer: State of the art. Crit Rev Oncol Hematol 2024; 194:104263. [PMID: 38218208 DOI: 10.1016/j.critrevonc.2024.104263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
The clinical implementation of liquid biopsy has dramatically modified the analytical paradigm for several solid tumors. To date, however, only circulating free DNA (cfDNA) has been approved in clinical practice to select targeted treatments for patients with colorectal cancer (CRC), non-small cell lung cancer (NSCLC), and breast cancer (BC). Interestingly, emerging liquid biopsy analytes in peripheral blood, including circulating tumor cells (CTC), miRNA, and extracellular vesicles (EVs), have been shown to play a crucial role in the clinical management of solid tumor patients. Here, we review how these blood-based biomarkers may positively impact early diagnosis, prognosis, and treatment response in ovarian cancer (OC) patients.
Collapse
Affiliation(s)
- Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Michela Dell'Aquila
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy.
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Giuseppe Bifulco
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | | |
Collapse
|
3
|
Wang P, Ma J, Li W, Wang Q, Xiao Y, Jiang Y, Gu X, Wu Y, Dong S, Guo H, Li M. Profiling the metabolome of uterine fluid for early detection of ovarian cancer. Cell Rep Med 2023:101061. [PMID: 37267943 DOI: 10.1016/j.xcrm.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
Ovarian cancer (OC) causes high mortality in women because of ineffective biomarkers for early diagnosis. Here, we perform metabolomics analysis on an initial training set of uterine fluid from 96 gynecological patients. A seven-metabolite-marker panel consisting of vanillylmandelic acid, norepinephrine, phenylalanine, beta-alanine, tyrosine, 12-S-hydroxy-5,8,10-heptadecatrienoic acid, and crithmumdiol is established for detecting early-stage OC. The panel is further validated in an independent sample set from 123 patients, discriminating early OC from controls with an area under the curve (AUC) of 0.957 (95% confidence interval [CI], 0.894-1). Interestingly, we find elevated norepinephrine and decreased vanillylmandelic acid in most OC cells, resulting from excess 4-hydroxyestradiol that antagonizes the catabolism of norepinephrine by catechol-O-methyltransferase. Moreover, exposure to 4-hydroxyestradiol induces cellular DNA damage and genomic instability that could lead to tumorigenesis. Thus, this study not only reveals metabolic features in uterine fluid of gynecological patients but also establishes a noninvasive approach for the early diagnosis of OC.
Collapse
Affiliation(s)
- Pan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Jihong Ma
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Wenjing Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Qilong Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yinan Xiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Yuening Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Xiaoyang Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China.
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing 100191, China.
| |
Collapse
|
4
|
Stergiopoulou D, Markou A, Giannopoulou L, Buderath P, Balgkouranidou I, Xenidis N, Kakolyris S, Kasimir-Bauer S, Lianidou E. Detection of ESR1 Mutations in Primary Tumors and Plasma Cell-Free DNA in High-Grade Serous Ovarian Carcinoma Patients. Cancers (Basel) 2022; 14:cancers14153790. [PMID: 35954453 PMCID: PMC9367392 DOI: 10.3390/cancers14153790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary In the present study we evaluated the frequency and the clinical relevance of ESR1 mutations in high-grade serous ovarian cancer (HGSOC). Drop-off droplet digital PCR (ddPCR) was first used to screen for ESR1 mutations in primary tumors (formalin-fixed paraffin-embedded, FFPEs) from HGSOC patients and plasma cell-free DNA (cfDNA) samples from advanced and metastatic ovarian cancer patients. We further used the recently developed ESR1-NAPA assay to detect individual ESR1 mutations in drop-off ddPCR-positive samples. We report for the first time the presence of ESR1 mutations in 15% of FFPEs and in 13.8% of plasma cfDNA samples from advanced and metastatic ovarian cancer patients. Abstract ESR1 mutations have been recently associated with resistance to endocrine therapy in metastatic breast cancer and their detection has led to the development and current evaluation of novel, highly promising therapeutic strategies. In ovarian cancer there have been just a few reports on the presence of ESR1 mutations. The aim of our study was to evaluate the frequency and the clinical relevance of ESR1 mutations in high-grade serous ovarian cancer (HGSOC). Drop-off droplet digital PCR (ddPCR) was first used to screen for ESR1 mutations in 60 primary tumors (FFPEs) from HGSOC patients and in 80 plasma cell-free DNA (cfDNA) samples from advanced and metastatic ovarian cancer patients. We further used our recently developed ESR1-NAPA assay to identify individual ESR1 mutations in drop-off ddPCR-positive samples. We report for the first time the presence of ESR1 mutations in 15% of FFPEs and in 13.8% of plasma cfDNA samples from advanced and metastatic ovarian cancer patients. To define the clinical significance of this finding, our results should be further validated in a large and well-defined cohort of ovarian cancer patients.
Collapse
Affiliation(s)
- Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece
| | - Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, 45359 Essen, Germany
| | - Ioanna Balgkouranidou
- Department of Oncology, Medical School, Democritus University of Thrace, 25510 Alexandroupolis, Greece
| | - Nikolaos Xenidis
- Department of Oncology, Medical School, Democritus University of Thrace, 25510 Alexandroupolis, Greece
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, 25510 Alexandroupolis, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, 45359 Essen, Germany
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece
- Correspondence: ; Tel.: +30-210-7274-311
| |
Collapse
|
5
|
Jie X, Du M, Zhang M, Jin X, Cai Q, Xu C, Zhang X. Mutation analysis of circulating tumor DNA and paired ascites and tumor tissues in ovarian cancer. Exp Ther Med 2022; 24:542. [PMID: 35978934 PMCID: PMC9366257 DOI: 10.3892/etm.2022.11479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is one conventional type of liquid biopsy that can be collected to dynamically monitor disease status. However, its potential clinical value and concordance with ascites samples or tumor biopsy needs to be evaluated further for patients with ovarian cancer. Therefore, the present study compared the mutation profiles among ctDNA, paired tumor tissue and ascites samples to explore their possible clinical value in ovarian cancer. Targeted next-generation sequencing was used to screen for mutations in 18 peripheral blood samples, six paired ascites samples and eight paired tumor tissues collected from patients with ovarian cancer. Functional analyses were performed using public databases. WebGestalt was used to perform Gene Ontology and pathway enrichment analyses. The cBioPortal for Cancer Genomics was used to assess therapeutic targets. Chilibot and Search Tool for the Retrieval of Interacting Genes/Proteins were used to obtain key genes and their functional interactions. Comparative analysis was performed among the three types of samples using Venn diagram. A total of 104 cancer-associated mutant genes in ctDNA samples, 95 genes in tumor tissues and 44 genes in ascites samples were found. A cluster covering 10 genes, namely NOTCH2, NOTCH3, lysine methyltransferase 2A, PTEN, androgen receptor, DNA-activated protein kinase catalytic subunit, hepatocyte nuclear factor 1 homeobox A, SRC, insulin receptor substrate 2 and SRY-box transcription factor 10, was obtained by Chilibot analysis. This gene panel may have the potential to monitor metastasis and identify therapeutic targets in ovarian cancer. Taken together, the present study focused on the mutant genes in ctDNA, ascites and tumor tissues, and suggested that the integrated information of different samples could be examined to comprehensively reflect the mutational landscape in ovarian cancer. However, procedures and protocols to interpret and utilize the integrated information obtained from various forms of liquid biopsies will require optimization prior to their use for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiang Jie
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Ming Du
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Meng Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiayu Jin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Qingqing Cai
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiaoyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
6
|
Wu Z, Pan Y, Wang Z, Ding P, Gao T, Li Q, Hu M, Zhu W, Pei R. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers. J Mater Chem B 2021; 9:2212-2220. [PMID: 33616137 DOI: 10.1039/d0tb02988b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The isolation of specific and sensitive circulating tumor cells (CTCs) is significant for applying them in cancer diagnosis and monitoring. In this work, dual aptamer-modified poly(lactic-co-glycolic acid) (PLGA) nanofiber-based microfluidic devices were fabricated to achieve the highly efficient capture and specific release of epithelial and mesenchymal CTCs of ovarian cancer. Dual aptamer targeting epithelial cell adhesion molecules (EpCAM) and N-cadherin proteins to improve the capture sensitivity, bovine serum albumin (BSA) to guarantee the capture purity and the nanofibers to increase the capture efficiency via synchronously and effectively capturing the epithelial and mesenchymal CTCs with good capture specificity and sensitivity from blood samples were used. We used the target cells including the ovarian cancer A2780 cells (N-cadherin-high, EpCAM-low) and OVCAR-3 cells (EpCAM-high, N-cadherin-low) to test the devices, which exhibited good capture efficiency (91% for A2780 cells, 89% for OVCAR-3 cells), release efficiency (95% for A2780 cells, 88% for OVCAR-3 cells), and sensitivity for rare cells (92% for A2780 cells, 88% for OVCAR-3 cells). Finally, the clinical blood samples of ovarian cancer patients were detected by the PLGA nanofiber-based microfluidic device, and 1 to 13 CTCs were successfully confirmed to be captured with the help of immunofluorescence staining identification. The results exhibited that the dual aptamer-modified PLGA nanofiber-based microfluidic device used as a tool for CTC capture has the potential for clinical application to guide the diagnosis, treatment, and prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Zeen Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. and CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yue Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. and CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qing Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Mingchao Hu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
7
|
Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers (Basel) 2020; 12:cancers12113455. [PMID: 33233600 PMCID: PMC7699762 DOI: 10.3390/cancers12113455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There are an extensive number of publications regarding the role of endogenous miRNAs as regulators of gene expression in cancer. However, extracellular miRNAs have emerged as a novel mechanism of cell-to-cell communication in normal conditions and disease and have drawn a large amount of interest as regulators of gene expression and as potential non-invasive biomarkers in cancer. Despite this high interest and the abundance of research on the biology and role of extracellular miRNAs in cancer, they are not yet completely understood. The aim of this review is to highlight the relevant biological characteristics of extracellular miRNAs that enable them to function as intercellular mediators of gene expression regulation and provide the recently published evidence of the specific role of extracellular miRNAs in tumor development and progression. Abstract MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.
Collapse
|