1
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
2
|
Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. MICROMACHINES 2022; 13:139. [PMID: 35056304 PMCID: PMC8778688 DOI: 10.3390/mi13010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Aarti Patel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Anastasia Kaffenes
- Department of Neuroscience, College of Arts and Sciences and College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Catherine Hord
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Delaney Kesterson
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Pinho D, Santos D, Vila A, Carvalho S. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. MICROMACHINES 2021; 12:497. [PMID: 33924829 PMCID: PMC8146416 DOI: 10.3390/mi12050497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is the second leading cause of cancer death worldwide. Significant advances in the molecular mechanisms underlying colorectal cancer have been made; however, the clinical approval of new drugs faces many challenges. Drug discovery is a lengthy process causing a rapid increase in global health care costs. Patient-derived tumour organoids are considered preclinical models with the potential for preclinical drug screening, prediction of patient outcomes, and guiding optimized therapy strategies at an individual level. Combining microfluidic technology with 3D tumour organoid models to recapitulate tumour organization and in vivo functions led to the development of an appropriate preclinical tumour model, organoid-on-a-chip, paving the way for personalized cancer medicine. Herein, a low-cost microfluidic device suitable for culturing and expanding organoids, OrganoidChip, was developed. Patient-derived colorectal cancer organoids were cultured within OrganoidChip, and their viability and proliferative activity increased significantly. No significant differences were verified in the organoids' response to 5-fluorouracil (5-FU) treatment on-chip and on-plate. However, the culture within the OrganoidChip led to a significant increase in colorectal cancer organoid-forming efficiency and overall size compared with conventional culture on a 24-well plate. Interestingly, early-stage and late-stage organoids were predominantly observed on-plate and within the OrganoidChip, respectively. The OrganoidChip thus has the potential to generate in vivo-like organotypic structures for disease modelling and drug screening applications.
Collapse
Affiliation(s)
- Diana Pinho
- International Iberian Nanotechnology Laboratory, Department of Nanoelectronics Engineering, 4715-330 Braga, Portugal;
| | - Denis Santos
- International Iberian Nanotechnology Laboratory, Department of Nanoelectronics Engineering, 4715-330 Braga, Portugal;
| | - Ana Vila
- International Iberian Nanotechnology Laboratory, IP Exploitation and Knowledge Transfer, 4715-330 Braga, Portugal;
| | - Sandra Carvalho
- International Iberian Nanotechnology Laboratory, Department of Nanoelectronics Engineering, 4715-330 Braga, Portugal;
| |
Collapse
|
4
|
Aboulkheyr Es H, Bigdeli B, Zhand S, Aref AR, Thiery JP, Warkiani ME. Mesenchymal stem cells induce PD-L1 expression through the secretion of CCL5 in breast cancer cells. J Cell Physiol 2020; 236:3918-3928. [PMID: 33145762 DOI: 10.1002/jcp.30135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Various factors in the tumor microenvironment (TME) regulate the expression of PD-L1 in cancer cells. In TME, mesenchymal stem cells (MSCs) play a crucial role in tumor progression, metastasis, and drug resistance. Emerging evidence suggests that MSCs can modulate the immune-suppression capacity of TME through the stimulation of PD-L1 expression in various cancers; nonetheless, their role in the induction of PD-L1 in breast cancer remained elusive. Here, we assessed the potential of MSCs in the stimulation of PD-L1 expression in a low PD-L1 breast cancer cell line and explored its associated cytokine. We assessed the expression of MSCs-related genes and their correlation with PD-L1 across 1826 breast cancer patients from the METABRIC cohort. After culturing an ER+/differentiated/low PD-L1 breast cancer cells with MSCs conditioned-medium (MSC-CM) in a microfluidic device, a variety of in-vitro assays was carried out to determine the role of MSC-CM in breast cancer cells' phenotype plasticity, invasion, and its effects on induction of PD-L1 expression. In-silico analysis showed a positive association between MSCs-related genes and PD-L1 expression in various types of breast cancer. Through functional assays, we revealed that MSC-CM not only prompts a phenotype switch but also stimulates PD-L1 expression at the protein level through secretion of various cytokines, especially CCL5. Treatment of MSCs with cytokine inhibitor pirfenidone showed a significant reduction in the secretion of CCL5 and consequently, expression of PD-L1 in breast cancer cells. We concluded that MSCs-derived CCL5 may act as a PD-L1 stimulator in breast cancer.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bahareh Bigdeli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean P Thiery
- Inserm Unit 1186, Comprehensive Cancer Center, Institute Gustave Roussy, Villejuif, France.,Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
5
|
Azadi S, Tafazzoli Shadpour M. The microenvironment and cytoskeletal remodeling in tumor cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:257-289. [DOI: 10.1016/bs.ircmb.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|