1
|
Zheng C, Furukawa C, Liu J, Sankaran S, Lin H, Munugeti N, Wang M, Smith GR. Debunking the dogma that RecBCD nuclease destroys phage. Genetics 2024:iyae199. [PMID: 39605281 DOI: 10.1093/genetics/iyae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024] Open
Abstract
For decades, it has been repeatedly claimed that the potent bacterial helicase-nuclease RecBCD (exonuclease V) destroys foreign (non-self) DNA, such as that of phages, but repairs and recombines cellular (self) DNA. While this would constitute a strong host-survival mechanism, no phage destroyed by RecBCD is ever specified in those claims. To determine which phages are destroyed by RecBCD, we searched for phage isolates that grow on Escherichia coli ΔrecBCD but not on recBCD+. In contrast to the prevailing claim, we found none among >80 new isolates from nature and >80 from previous collections. Based on these and previous observations, we conclude that RecBCD repairs broken DNA that can recombine but destroys DNA that cannot recombine and recycles the nucleotides.
Collapse
Affiliation(s)
- Clarence Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Curtis Furukawa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 916 145th Pl, NE Bellevue, WA 98007
| | - Jerry Liu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 16347 NE 12th Pl, Bellevue, WA 98008
| | - Srishti Sankaran
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA Brown University, Providence, RI
| | - Han Lin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 4654 SE Bakken Ct, Port Orchard, WA 98366
| | - Nidhi Munugeti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 1117 141st Pl NE, Bellevue, WA, 98005
| | - Meranda Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 13450 NE 12th Pl, Bellevue, WA 98005
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|
2
|
Skutel M, Yanovskaya D, Demkina A, Shenfeld A, Musharova O, Severinov K, Isaev A. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic Acids Res 2024; 52:5195-5208. [PMID: 38567730 PMCID: PMC11109961 DOI: 10.1093/nar/gkae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.
Collapse
Affiliation(s)
- Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Yanovskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Olga Musharova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Piscataway, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
3
|
Amundsen SK, Smith GR. Chi hotspot Control of RecBCD Helicase-nuclease: Enzymatic Tests Support the Intramolecular Signal-transduction Model. J Mol Biol 2024; 436:168482. [PMID: 38331210 PMCID: PMC10947171 DOI: 10.1016/j.jmb.2024.168482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Repair of broken DNA is essential for life; the reactions involved can also promote genetic recombination to aid evolution. In Escherichia coli, RecBCD enzyme is required for the major pathway of these events. RecBCD is a complex ATP-dependent DNA helicase with nuclease activity controlled by Chi recombination hotspots (5'-GCTGGTGG-3'). During rapid DNA unwinding, when Chi is in a RecC tunnel, RecB nuclease nicks DNA at Chi. Here, we test our signal transduction model - upon binding Chi (step 1), RecC signals RecD helicase to stop unwinding (step 2); RecD then signals RecB (step 3) to nick at Chi (step 4) and to begin loading RecA DNA strand-exchange protein (step 5). We discovered that ATP-γ-S, like the small molecule RecBCD inhibitor NSAC1003, causes RecBCD to nick DNA, independent of Chi, at novel positions determined by the DNA substrate length. Two RecB ATPase-site mutants nick at novel positions determined by their RecB:RecD helicase rate ratios. In each case, we find that nicking at the novel position requires steps 3 and 4 but not step 1 or 2, as shown by mutants altered at the intersubunit contacts specific for each step; nicking also requires RecD helicase and RecB nuclease activities. Thus, altering the RecB ATPase site, by small molecules or mutation, sensitizes RecD to signal RecB to nick DNA (steps 4 and 3, respecitvely) without the signal from RecC or Chi (steps 1 and 2). These new, enzymatic results strongly support the signal transduction model and provide a paradigm for studying other complex enzymes.
Collapse
Affiliation(s)
- Susan K Amundsen
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Farview Avenue North, A1-162, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Farview Avenue North, A1-162, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Amundsen SK, Smith GR. RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease. Microbiol Mol Biol Rev 2023; 87:e0004123. [PMID: 38047637 PMCID: PMC10732027 DOI: 10.1128/mmbr.00041-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.
Collapse
Affiliation(s)
| | - Gerald R. Smith
- Fred Hutchinson Cancer Center Seattle, Seattle, Washington, USA
| |
Collapse
|
5
|
CRISPR-Cas adaptation in Escherichia coli. Biosci Rep 2023; 43:232582. [PMID: 36809461 PMCID: PMC10011333 DOI: 10.1042/bsr20221198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Prokaryotes use the adaptive immunity mediated via the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated (CRISPR-Cas) system for protection against invading elements such as phages and plasmids. The immunity is achieved by capturing small DNA fragments or spacers from foreign nucleic acids (protospacers) and integrating them into the host CRISPR locus. This step of CRISPR-Cas immunity called 'naïve CRISPR adaptation' requires the conserved Cas1-Cas2 complex and is often supported by variable host proteins that assist in spacer processing and integration. Bacteria that have acquired new spacers become immune to the same invading elements when reinfected. CRISPR-Cas immunity can also be updated by integrating new spacers from the same invading elements, a process called 'primed adaptation'. Only properly selected and integrated spacers are functional in the next steps of CRISPR immunity when their processed transcripts are used for RNA-guided target recognition and interference (target degradation). Capturing, trimming, and integrating new spacers in the correct orientation are universal steps of adaptation to all CRISPR-Cas systems, but some details are CRISPR-Cas type-specific and species-specific. In this review, we provide an overview of the mechanisms of CRISPR-Cas class 1 type I-E adaptation in Escherichia coli as a general model for adaptation processes (DNA capture and integration) that have been studied in detail. We focus on the role of host non-Cas proteins involved in adaptation, particularly on the role of homologous recombination.
Collapse
|
6
|
Amundsen SK, Richardson A, Ha K, Smith GR. A flexible RecC surface loop required for Chi hotspot control of RecBCD enzyme. Genetics 2023; 223:iyac175. [PMID: 36521180 PMCID: PMC9991510 DOI: 10.1093/genetics/iyac175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli RecBCD helicase-nuclease promotes vital homologous recombination-based repair of DNA double-strand breaks. The RecB nuclease domain (Nuc) is connected to the RecB helicase domain by a 19-amino-acid tether. When DNA binds to RecBCD, published evidence suggests that Nuc moves ∼50 Å from the exit of a RecC tunnel, from which the 3'-ended strand emerges during unwinding, to a distant position on RecC's surface. During subsequent ATP-dependent unwinding of DNA, Nuc nicks the 3'-ended strand near 5'-GCTGGTGG-3' (Chi recombination hotspot). Here, we test our model of Nuc swinging on the tether from the RecC tunnel exit to the RecC distant surface and back to the RecC tunnel exit to cut at Chi. We identify positions in a flexible surface loop on RecC and on RecB Nuc with complementary charges, mutation of which strongly reduces but does not eliminate Chi hotspot activity in cells. The recC loop mutation interacts with recB mutations hypothesized to be in the Chi-activated intramolecular signal transduction pathway; the double mutants, but not the single mutants, eliminate Chi hotspot activity. A RecC amino acid near the flexible loop is also essential for full Chi activity; its alteration likewise synergizes with a signal transduction mutation to eliminate Chi activity. We infer that altering the RecC surface loop reduces coordination among the subunits, which is critical for Chi hotspot activity. We discuss other RecBCD mutants with related properties.
Collapse
Affiliation(s)
- Susan K Amundsen
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Khoi Ha
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Wilkinson M, Wilkinson OJ, Feyerherm C, Fletcher EE, Wigley DB, Dillingham MS. Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub. eLife 2022; 11:e83409. [PMID: 36533901 PMCID: PMC9836394 DOI: 10.7554/elife.83409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
Following infection of bacterial cells, bacteriophage modulate double-stranded DNA break repair pathways to protect themselves from host immunity systems and prioritise their own recombinases. Here, we present biochemical and structural analysis of two phage proteins, gp5.9 and Abc2, which target the DNA break resection complex RecBCD. These exemplify two contrasting mechanisms for control of DNA break repair in which the RecBCD complex is either inhibited or co-opted for the benefit of the invading phage. Gp5.9 completely inhibits RecBCD by preventing it from binding to DNA. The RecBCD-gp5.9 structure shows that gp5.9 acts by substrate mimicry, binding predominantly to the RecB arm domain and competing sterically for the DNA binding site. Gp5.9 adopts a parallel coiled-coil architecture that is unprecedented for a natural DNA mimic protein. In contrast, binding of Abc2 does not substantially affect the biochemical activities of isolated RecBCD. The RecBCD-Abc2 structure shows that Abc2 binds to the Chi-recognition domains of the RecC subunit in a position that might enable it to mediate the loading of phage recombinases onto its single-stranded DNA products.
Collapse
Affiliation(s)
- Martin Wilkinson
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Oliver J Wilkinson
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Connie Feyerherm
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Emma E Fletcher
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Dale B Wigley
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Mark S Dillingham
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|