1
|
Ballinas-Indilí R, Sánchez Vergara ME, Rosales-Amezcua SC, Hernández Méndez JA, López-Mayorga B, Miranda-Ruvalcaba R, Álvarez-Toledano C. Synthesis of New Ruthenium Complexes and Their Exploratory Study as Polymer Hybrid Composites in Organic Electronics. Polymers (Basel) 2024; 16:1338. [PMID: 38794531 PMCID: PMC11125087 DOI: 10.3390/polym16101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor material were explored. Hence hybrid films in ruthenium complexes were deposited using PMMA as a polymeric matrix. The hybrid films were characterized by infrared spectrophotometry and atomic force microscopy. The obtained results confirmed that the presence of the ruthenium complexes enhanced the mechanical properties in addition to increasing the transmittance, favoring the determination of their optical parameters. Both hybrid films exhibited a maximum stress around 10.5 MPa and a Knoop hardness between 2.1 and 18.4. Regarding the optical parameters, the maximum transparency was obtained at wavelengths greater than 590 nm, the optical band gap was in the range of 1.73-2.24 eV, while the Tauc band gap was in the range of 1.68-2.17 eV, and the Urbach energy was between 0.29 and 0.50 eV. Consequently, the above comments are indicative of an adequate semiconductor behavior; hence, the target polymeric hybrid films must be welcomed as convenient candidates as active layers or transparent electrodes in organic electronics.
Collapse
Affiliation(s)
- Ricardo Ballinas-Indilí
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Saulo C. Rosales-Amezcua
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| | - Joaquín André Hernández Méndez
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Byron López-Mayorga
- Escuela de Química, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, 11 avenida, Ciudad de Guatemala 01012, Guatemala;
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| |
Collapse
|
2
|
Abstract
Although the application of arene-osmium(II) complexes in homogeneous catalysis has been much less studied than that of their ruthenium analogues, different works have shown that, in some instances, a comparable or even superior effectiveness can be achieved with this particular class of compounds. This review article focuses on the catalytic applications of arene-osmium(II) complexes. Among others, transfer hydrogenation, hydrogenation, oxidation, and nitrile hydration reactions, as well as different C-C bond forming processes, are comprehensively discussed.
Collapse
|
3
|
Arene-ruthenium(II) and osmium(II) complexes as catalysts for nitrile hydration and aldoxime rearrangement reactions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Therrien B. Unmasking Arene Ruthenium Building Blocks. CHEM REC 2020; 21:460-468. [PMID: 33215871 DOI: 10.1002/tcr.202000128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
We have, like many others, contributed to the development and to the popularity of arene ruthenium assemblies. From early on, our research was driven by applications, mainly biological (therapeutic, drug delivery, DNA interactions, photodynamic therapy, imaging). For nearly 15 years, we have focused on the use of arene ruthenium building block as a tool to construct added-value objects. In this account, we want to give the basic reasons behind our choice, and uncover our most successful examples, with an emphasis on the foreseen applications.
Collapse
Affiliation(s)
- Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH 2000, Neuchatel, Switzerland
| |
Collapse
|
5
|
|
6
|
Fink D, Orth N, Ebel V, Gogesch FS, Staiger A, Linseis M, Ivanović-Burmazović I, Winter RF. Self-Assembled Redox-Active Tetraruthenium Macrocycles with Large Intracyclic Cavities. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Fink
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Nicole Orth
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Viktoria Ebel
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Franciska S. Gogesch
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anne Staiger
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
7
|
González-Fernández R, Crochet P, Cadierno V. Half-sandwich ruthenium(ii) complexes with tethered arene-phosphinite ligands: synthesis, structure and application in catalytic cross dehydrogenative coupling reactions of silanes and alcohols. Dalton Trans 2019; 49:210-222. [PMID: 31808486 DOI: 10.1039/c9dt04421c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The preparation of the tethered arene-ruthenium(ii) complexes [RuCl2{η6:κ1(P)-C6H5(CH2)nOPR2}] (R = Ph, n = 1 (9a), 2 (9b), 3 (9c); R = iPr, n = 1 (10a), 2 (10b), 3 (10c)) from the corresponding phosphinite ligands R2PO(CH2)nPh (R = Ph, n = 1 (1a), 2 (1b), 3 (1c); R = iPr, n = 1 (2a), 2 (2b), 3 (2c)) is presented. Thus, in a first step, the treatment at room temperature of tetrahydrofuran solutions of dimers [{RuCl(μ-Cl)(η6-arene)}2] (arene = p-cymene (3), benzene (4)) with 1-2a-c led to the clean formation of the corresponding mononuclear derivatives [RuCl2(η6-p-cymene){R2PO(CH2)nPh}] (5-6a-c) and [RuCl2(η6-benzene){R2PO(CH2)nPh}] (7-8a-c), which were isolated in 66-99% yield. The subsequent heating of 1,2-dichloroethane solutions of these compounds at 120 °C allowed the exchange of the coordinated arene. The substitution process proceeded faster with the benzene derivatives 7-8a-c, from which complexes 9-10a-c were generated in 61-82% yield after 0.5-10 h of heating. The molecular structures of [RuCl2(η6-p-cymene){iPr2PO(CH2)3Ph}] (6c) and [RuCl2{η6:κ1(P)-C6H5(CH2)nOPiPr2}] (n = 1 (10a), 2 (10b), 3 (10c)) were unequivocally confirmed by X-ray diffraction methods. In addition, complexes [RuCl2{η6:κ1(P)-C6H5(CH2)nOPR2}] (9-10a-c) proved to be active catalysts for the dehydrogenative coupling of hydrosilanes and alcohols under mild conditions (r.t.). The best results were obtained with [RuCl2{η6:κ1(P)-C6H5(CH2)3OPiPr2}] (10c), which reached TOF and TON values up to 117 600 h-1 and 57 000, respectively.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain.
| | | | | |
Collapse
|
8
|
Zhang X, Liu D, Lv F, Yu B, Shen Y, Cong H. Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. Colloids Surf B Biointerfaces 2019; 182:110373. [DOI: 10.1016/j.colsurfb.2019.110373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022]
|
9
|
Song HS, Song YH, Singh N, Kim H, Jeon H, Kim I, Kang SC, Chi KW. New Self-assembled Supramolecular Bowls as Potent Anticancer Agents for Human Hepatocellular Carcinoma. Sci Rep 2019; 9:242. [PMID: 30659228 PMCID: PMC6338755 DOI: 10.1038/s41598-018-36755-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
We report herein on the design, synthesis and biological activity of Ru-based self-assembled supramolecular bowls as a potent anticancer therapeutic in human hepatocellular cancer. The potent complex induces production of reactive oxygen species (ROS) by higher fatty acid β-oxidation and down-regulation of glucose transporter-mediated pyruvate dehydrogenase kinase 1 via reduced hypoxia-inducible factor 1α. Also, overexpressed acetyl-CoA activates the tricarboxylic acid cycle and the electron transport system and induces hypergeneration of ROS. Finally, ROS overexpressed through this pathway leads to apoptosis. Furthermore, we demonstrate that the naphthalene derived molecular bowl activates classical apoptosis via crosstalk between the extrinsic and intrinsic signal pathway. Our work into the mechanism of Ru-based self-assembled supramolecular bowls can provide valuable insight into the potential for use as a promising anticancer agent.
Collapse
Affiliation(s)
- Hae Seong Song
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Young Ho Song
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hyunuk Kim
- Convergence Materials Laboratory, Korea Institute of Energy Research, Daejeon, 28119, Republic of Korea
| | - Hyelin Jeon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Inhye Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
10
|
Therrien B. The Role of the Second Coordination Sphere in the Biological Activity of Arene Ruthenium Metalla-Assemblies. Front Chem 2018; 6:602. [PMID: 30619812 PMCID: PMC6297182 DOI: 10.3389/fchem.2018.00602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
For nearly 15 years, the biological and biomedical applications of arene ruthenium metalla-assemblies have flourished. Today, the synthetic strategies to generate arene ruthenium assemblies are well-established, and these compounds offer tremendous possibilities in terms of structural diversities and chemical properties. However, the second coordination sphere is often poorly considered, if not ignored, when designing such arene ruthenium metalla-assemblies. These weak interactions (hydrogen bonding, hydrophobic, ionic, electrostatic, van der Waals, π-π stacking) that take place in the solid state or in solution are generally key interactions for the foreseen applications. Therefore, in this review, we want to emphasize this important property of arene ruthenium metalla-assemblies by showing examples dealing with second coordination sphere interactions and how this can be better integrated in the design of these versatile supramolecular metal-based entities.
Collapse
Affiliation(s)
- Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|