1
|
Photodynamic therapy of the experimental tumors of different morphological types with liposomal boronated chlorin е6. BIOMEDICAL PHOTONICS 2021. [DOI: 10.24931/2413-9432-2021-10-3-12-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The article summarizes the results of studies of the effectiveness of photodynamic therapy using a new domestic photosensitizer liposomal borated chlorin e6 (LBC) after its parenteral administration (intraperitoneal and intravenous). Antitumor efficacy was evaluated in rats with M-1 sarcoma and PC-1 alveolar liver cancer and mice with B16 melanoma and Ehrlich’s carcinoma, which were transplanted subcutaneously into the thigh area of the animals. The aim of the study was to determine the optimal regimes of photodynamic therapy that would allow achieving the maximum antitumor effect up to 21 days after the photodynamic therapy. The therapy was carried out under the control of the accumulation of the photosensitizer in the tumor and surrounding tissues of the thigh by selecting the doses of the drug and the parameters of laser radiation (energy density and power density). The effectiveness of therapy was assessed by the inhibition of tumor growth, by the percentage of animals with complete tumor regression, by the absolute growth rate in animals with continued tumor growth compared to controls. The results of our studies have shown that the domestic photosensitizer liposomal borated chlorin e6 has high antitumor activity in vivo. In an experimental study of the photosensitizer under certain PDT modes, the maximum antitumor effect (complete tumor regression in 100% of animals) was obtained up to 21 days after PDT in all tumor models used.
Collapse
|
2
|
Eleftheriou K, Kaminari A, Panagiotaki KN, Sideratou Z, Zachariadis M, Anastassopoulou J, Tsiourvas D. A combination drug delivery system employing thermosensitive liposomes for enhanced cell penetration and improved in vitro efficacy. Int J Pharm 2020; 574:118912. [PMID: 31809858 DOI: 10.1016/j.ijpharm.2019.118912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Drug-loaded thermosensitive liposomes are investigated as drug delivery systems in combination with local mild hyperthermia therapy due to their capacity to release their cargo at a specific temperature range (40-42 °C). Additional benefit can be achieved by the development of such systems that combine two different anticancer drugs, have cell penetration properties and, when heated, release their drug payload in a controlled fashion. To this end, liposomes were developed incorporating at low concentration (5 mol%) a number of monoalkylether phosphatidylcholine lipids, encompassing the platelet activating factor, PAF, and its analogues that induce thermoresponsiveness and have anticancer biological activity. These thermoresponsive liposomes were efficiently (>90%) loaded with doxorubicin (DOX), and their thermal properties, stability and drug release were investigated both at 37 ◦C and at elevated temperatures. In vitro studies of the most advantageous liposomal formulation containing the methylated PAF derivative (methyl-PAF, edelfosine), an established antitumor agent, were performed on human prostate cancer cell lines. This system exhibits controlled release of DOX at 40-42 °C, enhanced cell uptake due to the presence of methyl-PAF, and improved cell viability inhibition due to the combined action of both medications.
Collapse
Affiliation(s)
- Kleopatra Eleftheriou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Archontia Kaminari
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Katerina N Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Michael Zachariadis
- Institute of Biosciences and Applications, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Jane Anastassopoulou
- Radiation Chemistry and Biospectroscopy, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
3
|
Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane - a structure-activity relationship study. Chem Phys Lipids 2017; 210:129-141. [PMID: 29111431 DOI: 10.1016/j.chemphyslip.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023]
Abstract
Recently developed lipids with the trans-2-aminocyclohexanol (TACH) moiety represent unique pH-sensitive conformational switches ("flipids") that can trigger the membrane of liposome-based drug delivery systems at lowered pH as seen in many pathological scenarios. A library of flipids with various TACH-based headgroups and hydrocarbon tails were designed, prepared, and characterized to systematically elucidate the relationship between their chemical structures and their ability to form and to trigger liposomes. Liposomes (fliposomes) consisting of a flipid, POPC and PEG-ceramide were stable at 4°C, pH 7.4 for up to several months and yet released the encapsulated fluorophore in seconds upon acidification. The colloidal properties and encapsulation efficiencies of the fliposomes depended on the structure features of the flipids such as the polarity of the headgroups and the shape and fluidity of the lipid tails. The pH-triggered release also depended on the flipid structure, where shorter linear tails yielded more efficient release. The release of fliposomes was enhanced at different narrow pH ranges, depending on the basicity of the flipid headgroup, which can be estimated either by calculated pKa or by acid/base titration of the flipids while its conformation is monitored by 1H NMR. The structure-activity relationship of the flipids supports "lipid tail conformational shortening" as the mechanism to disrupt lipid membranes and would provide great flexibility in the design of pH-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Xin Guo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
4
|
Eleftheriou K, Sideratou Z, Thanassoulas A, Papakyriakou A, Tsiourvas D. Comparative Experimental and Computational Study of Monoalkyl Chain Phosphatidylcholine-Containing Thermoresponsive Liposomes. J Phys Chem B 2016; 120:5417-28. [PMID: 27280363 DOI: 10.1021/acs.jpcb.6b02783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liposomes containing lysophospholipids are intensively studied as drug delivery systems that are stable at normal body temperature but exhibit fast release of their drug load at slightly elevated temperatures. In this study, the stability and release properties of dipalmitoylglycerophosphocholine (DPPC)-based liposomes incorporating the commonly used lysophosphatidylocholine (lyso-PC), and a series of monoalkyl chain ether-linked phosphatidylcholine, i.e., the biologically relevant monoalkyl chain platelet activating factor (PAF) and its derivatives lyso-PAF and methyl-PAF, were investigated. To this end a series of PEGylated small unilamellar liposomes with DPPC:monoalkyl lipid compositions of 5% and 10% molar ratio were prepared and compared with regard to stability (37 °C) and release properties at elevated temperatures (38-43 °C). All systems were characterized with respect to size distribution, ζ-potential, and phase transition characteristics. The presence of ether-lipids endows liposomes with superior (∼10% increase) release properties at 5% incorporation compared to lyso-PC, while at 10% molar ratio the formulations do not differ significantly, the release being close to 90%. The findings are supported by atomistic molecular dynamics simulations that suggest a correlation between the enhanced permeability and increased penetration of water molecules within the bilayers with density fluctuations resulting from the increased area-per-lipid and the disorder of the lysolipids alkyl chains.
Collapse
Affiliation(s)
- Kleopatra Eleftheriou
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Angelos Thanassoulas
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Athanasios Papakyriakou
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| |
Collapse
|